Int J Biol Macromol
August 2025
Sclerostin (SOST) serves as a pivotal negative regulator of bone formation, and its dysregulated expression is implicated in the pathogenesis of skeletal disorders, including osteoporosis. While substantial progress has been made in elucidating the intracellular signaling pathways activated by SOST, the molecular mechanisms governing its expression remain less well understood. In this study, we identify an RNA G-quadruplex (RG4) secondary structure within the 3' untranslated region (3' UTR) of SOST.
View Article and Find Full Text PDFBackground/objectives: An adequate postprandial glycemic response (PPGR) is crucial for glycemic control in diabetes. However, predicting glycemic responses to mixed meals is challenging, as they are influenced by various nutritional factors. Moreover, despite the increasing demand for convenience foods, the validation of their impact on the PPGR remains insufficient.
View Article and Find Full Text PDFEthnopharmacological Relevance: Osteoporosis is a chronic metabolic bone disorder characterized by excessive bone resorption. The NuanXin Formula (NX) is a classical traditional Chinese medicine formula that can warm and tonify kidney Yang, as well as replenish Qi and blood, which are essential for maintaining bone health and regulating bone metabolism. Nevertheless, the functions and mechanisms of NX in osteoporosis therapy remain unclear.
View Article and Find Full Text PDFBackground And Purpose: Regulation of mitochondrial calcium overload and ferroptosis with mitochondria-targeting ligands is an attractive anticancer strategy but it remains a challenge. The aim of the present study was to demonstrate that a mitochondria-targeting and mtDNA G-quadruplex-binding ligand, BYB, induced mitochondrial calcium overload and ferroptosis in HeLa cells and showed potent in vitro and in vivo anticancer activity.
Experimental Approach: Cellular functions and molecular mechanism were studied using cell viability assay, live-cell imaging, western blotting, immunofluorescence, cell uptake, cell cycle arrest and apoptosis analysis, mitochondrial metabolism analysis, Comet assay, and wound-healing analysis.
Nucleic Acids Res
April 2025
Oocyte maturation-coupled mRNA post-transcriptional regulation is essential for the establishment of developmental potential. Previously, oocyte mRNA translation efficiencies focused on the trans-regulation of key RNA-binding protein (RBPs), rarely related to RNA structure. RNA G-quadruplexes (rG4s) are four-stranded RNA secondary structures involved in many different aspects of RNA metabolism.
View Article and Find Full Text PDFSci Bull (Beijing)
April 2025
DHX36 plays a crucial role in regulating transcriptional and post-transcriptional processes through its interaction with G-quadruplexes (G4s). The mechanisms by which DHX36 regulates G4s vary across different cell types and physiological conditions. Oocyte-specific conditional knockout (CKO) mice were utilized to study the impact of DHX36 deficiency on female fertility.
View Article and Find Full Text PDFInt J Biol Macromol
March 2025
G-quadruplexes (G4s) are non-canonical nucleic acid secondary structures formed by guanine-rich DNA or RNA sequences. These structures play pivotal roles in cellular processes, including DNA replication, transcription, RNA splicing, and protein translation. High-throughput sequencing has significantly advanced the study of G4s by enabling genome-wide mapping and detailed characterization.
View Article and Find Full Text PDFJ Med Chem
February 2025
Positron emission tomography (PET) is a common imaging technique and can provide accurate information about the size, shape, and location of tumors. Recent evidence has shown that G-quadruplex structures (G4s) are identified in human oncogenes, and these special structures are recognized as diagnostic cancer markers and drug targets for anticancer therapies. Although a number of techniques for in vivo imaging of G4s have been developed, achieving sufficient sensitivity and selectivity in vivo remains challenging.
View Article and Find Full Text PDFJ Acoust Soc Am
September 2024
Unlike acoustic metasurfaces that rely solely on phase gradients, acoustic metagratings (AMs) operate based on both phase gradients and grating diffraction, thus further extending the generalized Snell's law (GSL). In particular, AMs can achieve reversal of refraction and reflection based on the parity of the number of wave propagations inside the AMs. So far, discussions of this GSL extension have largely been applied to one-dimensional periodic AMs, while the designs of two-dimensional (2D) periodic AMs and their performance in three-dimensional (3D) space have been quite limited.
View Article and Find Full Text PDFGastrointestinal cancer is among the most common cancers worldwide. Immune checkpoint inhibitor-based cancer immunotherapy has become an innovative approach in cancer treatment; however, its efficacy in gastrointestinal cancer is limited by the absence of infiltration of immune cells within the tumor microenvironment. Therefore, it is therefore urgent to develop a novel therapeutic drug to enhance immunotherapy.
View Article and Find Full Text PDFHuman telomerase reverse transcriptase (hTERT) may have noncanonical functions in transcriptional regulation and metabolic reprogramming in cancer cells, but it is a challenging target. We thus developed small-molecule ligands targeting hTERT promoter G-quadruplex DNA structures (hTERT G4) to downregulate hTERT expression. Ligand showed high affinity toward hTERT G4 ( = 1.
View Article and Find Full Text PDFMillirobots must have low cost, efficient locomotion, and the ability to track target trajectories precisely if they are to be widely deployed. With current materials and fabrication methods, achieving all of these features in one millirobot remains difficult. We develop a series of graphene-based helical millirobots by introducing asymmetric light pattern distortion to a laser-induced polymer-to-graphene conversion process; this distortion resulted in the spontaneous twisting and peeling off of graphene sheets from the polymer substrate.
View Article and Find Full Text PDFMetasurface holograms represent a common category of metasurface devices that utilize in-plane phase gradients to shape wavefronts, forming holographic images through the application of the generalized Snell's law (GSL). While conventional metasurfaces focus solely on phase gradients, metagratings, which incorporate higher-order wave diffraction, further expand the GSL's generality. Recent advances in certain acoustic metagratings demonstrate an updated GSL extension capable of reversing anomalous transmission and reflection, whose reversal is characterized by the parity of the number of wave propagation trips through the metagrating.
View Article and Find Full Text PDFMitochondria are important drug targets for anticancer and other disease therapies. Certain human mitochondrial DNA sequences capable of forming G-quadruplex structures (G4s) are emerging drug targets of small molecules. Despite some mitochondria-selective ligands being reported for drug delivery against cancers, the ligand design is mostly limited to the triphenylphosphonium scaffold.
View Article and Find Full Text PDFGlioblastoma (GBM), deep in the brain, is more challenging to diagnose and treat than other tumors. Such challenges have blocked the development of high-impact therapeutic approaches that combine reliable diagnosis with targeted therapy. Herein, effective cyanine dyes (IRLy) with the near-infrared two region (NIR-II) adsorption and aggregation-induced emission (AIE) have been developed via an "extended conjugation & molecular rotor" strategy for multimodal imaging and phototherapy of deep orthotopic GBM.
View Article and Find Full Text PDFrRNAs are prevalent in living organisms. They are produced in nucleolus and mitochondria and play essential cellular functions. In addition to the primary biofunction in protein synthesis, rRNAs have been recognized as the emerging signaling molecule and drug target for studies on nucleolus morphology, mitochondrial autophagy, and tumor cell malignancy.
View Article and Find Full Text PDFHealth Inf Sci Syst
December 2024
Thyroid ultrasound is a widely used diagnostic technique for thyroid nodules in clinical practice. However, due to the characteristics of ultrasonic imaging, such as low image contrast, high noise levels, and heterogeneous features, detecting and identifying nodules remains challenging. In addition, high-quality labeled medical imaging datasets are rare, and thyroid ultrasound images are no exception, posing a significant challenge for machine learning applications in medical image analysis.
View Article and Find Full Text PDFWorld J Clin Cases
October 2023
Background: () is a Gram-negative diplococcus that is common in the digestive tract. Infected patients generally experience symptoms such as fever and diarrhea. Mild cases are mostly self-healing gastroenteritis, and severe cases can cause fatal typhoid fever.
View Article and Find Full Text PDFHealth Inf Sci Syst
December 2023
Background: Drug-target interaction (DTI) is a vital drug design strategy that plays a significant role in many processes of complex diseases and cellular events. In the face of challenges such as extensive protein data and experimental costs, it is suggested to apply bioinformatics approaches to exploit potential interactions to design new targeted medications. Different data and interaction types bring difficulties to study involving incompatible and heterology formats.
View Article and Find Full Text PDFComput Methods Programs Biomed
August 2023
Background And Objective: Patients with rheumatoid arthritis (RA) are more susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) than healthy population, but there is still no therapeutic strategy available for RA patients with corona virus disease 2019 (COVID-19). Guizhi-Shaoyao-Zhimu decoction (GSZD), Chinese ancient experience decoction, has a significant effect on the treatment of Rheumatism and gout. To prevent RA patients with mild-to-moderate COVID-19 from developing into severe COVID-19, this study explored the potential possibility and mechanism of GSZD in the treatment of this population.
View Article and Find Full Text PDFThe development of site-specific, target-selective and biocompatible small molecule ligands as a fluorescent tool for real-time study of cellular functions of RNA G-quadruplexes (G4s), which are associated with human cancers, is of significance in cancer biology. We report a fluorescent ligand that is a cytoplasm-specific and RNA G4-selective fluorescent biosensor in live HeLa cells. The in vitro results show that the ligand is highly selective targeting RNA G4s including VEGF, NRAS, BCL2 and TERRA.
View Article and Find Full Text PDFPhotosensitizers play a key role in bioimaging and photodynamic therapy (PDT) of cancer. However, conventional photosensitizers usually do not achieve the desired efficacy in PDT due to their poor photostability, targeting ability, and responsiveness. Herein, we designed a series of photosensitizers with aggregation-induced emission (AIE) effect using benzothiazole- triphenylamine (BZT-triphenylamine) as the parent nucleus.
View Article and Find Full Text PDFIn the complex and severe tumor microenvironment, the antitumor efficiency of nanomedicines is significantly limited by their low-efficacy monotherapy, non-tumor targeting, and systemic toxicity. Herein, to achieve tumor-targeted and enhanced chemodynamic/photothermal therapy (CDT/PTT), we fabricated an "all-in-one" biocompatible transferrin-loaded cobalt ferrate nanoparticle (CoFeO@Tf (CFOT)) with multiple functions by a simple solvothermal method and the following transferrin (Tf) functionalization. Upon exposure to 808 nm laser irradiation, CFOT, as a novel photothermal agent, exhibited outstanding phototherapeutic activity because of its excellent photothermal conversion efficiency ( = 46.
View Article and Find Full Text PDF