Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Background: Drug-target interaction (DTI) is a vital drug design strategy that plays a significant role in many processes of complex diseases and cellular events. In the face of challenges such as extensive protein data and experimental costs, it is suggested to apply bioinformatics approaches to exploit potential interactions to design new targeted medications. Different data and interaction types bring difficulties to study involving incompatible and heterology formats. The analysis of drug-target interactions in a comprehensive and unified model is a significant challenge.
Method: Here, we propose a general method for predicting interactions between small-molecule drugs and protein targets, Large-scale Drug target Screening Convolutional Neural Network (LDS-CNN), which used unified encoding to achieve the calculation of the different data formats in an integrated model to realize feature abstraction and potential object prediction.
Result: On 898,412 interaction data involving 1683 small-molecule compounds and 14,350 human proteins from 8.8 billion records, the proposed method achieved an area under the curve (AUC) of 0.96, an area under the precision-recall curve (AUPRC) of 0.95, and an accuracy of 90.13%. The experimental results illustrated that the proposed method attained high accuracy on the test set, indicating its high predictive ability in drug-target interaction prediction. LDS-CNN is effective for the prediction of large-scale datasets and datasets composed of data with different formats.
Conclusion: In this study, we propose a DTI prediction method to solve the problems of unified encoding of large-scale data in multiple formats. It provides a feasible way to efficiently abstract the features among different types of drug-related data, thus reducing experimental costs and time consumption. The proposed method can be used to identify potential drug targets and candidates for the treatment of complex diseases. This work provides a reference for DTI to process large-scale data and different formats with deep learning methods and provides certain suggestions for future research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10475000 | PMC |
http://dx.doi.org/10.1007/s13755-023-00243-w | DOI Listing |