98%
921
2 minutes
20
Thyroid ultrasound is a widely used diagnostic technique for thyroid nodules in clinical practice. However, due to the characteristics of ultrasonic imaging, such as low image contrast, high noise levels, and heterogeneous features, detecting and identifying nodules remains challenging. In addition, high-quality labeled medical imaging datasets are rare, and thyroid ultrasound images are no exception, posing a significant challenge for machine learning applications in medical image analysis. In this study, we propose a Dual-branch Attention Learning (DBAL) convolutional neural network framework to enhance thyroid nodule detection by capturing contextual information. Leveraging jigsaw puzzles as a pretext task during network training, we improve the network's generalization ability with limited data. Our framework effectively captures intrinsic features in a global-to-local manner. Experimental results involve self-supervised pre-training on unlabeled ultrasound images and fine-tuning using 1216 clinical ultrasound images from a collaborating hospital. DBAL achieves accurate discrimination of thyroid nodules, with a 88.5% correct diagnosis rate for malignant and benign nodules and a 93.7% area under the ROC curve. This novel approach demonstrates promising potential in clinical applications for its accuracy and efficiency.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10794678 | PMC |
http://dx.doi.org/10.1007/s13755-023-00266-3 | DOI Listing |
JAMA
September 2025
Division of Surgery and Interventional Science, UCL, London, United Kingdom.
Importance: Multiparametric magnetic resonance imaging (MRI), with or without prostate biopsy, has become the standard of care for diagnosing clinically significant prostate cancer. Resource capacity limits widespread adoption. Biparametric MRI, which omits the gadolinium contrast sequence, is a shorter and cheaper alternative offering time-saving capacity gains for health systems globally.
View Article and Find Full Text PDFJAMA Cardiol
September 2025
Department of Cardiology, Inselspital University Hospital of Bern, University of Bern, Bern, Switzerland.
Importance: Right anomalous aortic origin of a coronary artery (R-AAOCA) is a rare congenital condition increasingly diagnosed with the growing use of cardiac imaging. Due to dynamic compression of the anomalous vessel, invasive fractional flow reserve (FFR) during a dobutamine-atropine volume challenge (FFR-dobutamine) is considered the reference standard. A reliable alternative method is needed to reduce extensive invasive testing, but it remains uncertain whether noninvasive imaging can accurately assess the hemodynamic relevance of R-AAOCA.
View Article and Find Full Text PDFCereb Cortex
August 2025
Section of Brain Function Information, National Institute for Physiological Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan.
This study aimed to identify brain activity modulations associated with different types of visual tracking using advanced functional magnetic resonance imaging techniques developed by the Human Connectome Project (HCP) consortium. Magnetic resonance imaging data were collected from 27 healthy volunteers using a 3-T scanner. During a single run, participants either fixated on a stationary visual target (fixation block) or tracked a smoothly moving or jumping target (smooth or saccadic tracking blocks), alternating across blocks.
View Article and Find Full Text PDFCereb Cortex
August 2025
Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106, Marseille 13005, France.
Over three decades, statistical parametric mapping has transformed neuroimaging from descriptive mapping to causal inference, placing generative models at the core of causal explanations for brain function. It inspired to a large degree The Virtual Brain, which builds subject-specific digital twins from multimodal data, enabling brain simulations and exploration. Both frameworks converge at parameter estimation, where model and data meet, providing the mathematical manifestation of cause-effect in pathophysiology.
View Article and Find Full Text PDFCereb Cortex
August 2025
The Clinical Hospital of Chengdu Brain Sciences Institute, University of Electronic Sciences and Technology of China (UESTC), 2006 Xiyuan Avenue, West Hi Tech Zone, 611731, Chengdu, China.
This commentary reflects three decades of interaction between the Cuban neuroinformatics tradition and the statistical parametric mapping (SPM) framework. From the early development of neurometrics in Cuba to global initiatives like the Global Brain Consortium, our trajectory has paralleled and intersected with that of SPM. We highlight shared commitments to generative modeling, Bayesian inference, and population-level brain mapping, as shaped through collaborations, workshops, and joint theoretical work with Karl Friston and his group.
View Article and Find Full Text PDF