Publications by authors named "Yize Zhang"

Gemcitabine-based chemotherapy remains a cornerstone in pancreatic cancer treatment, yet its efficacy is hindered by poor bioavailability and adaptive resistance mechanisms, such as autophagy. In this study, we developed a hyaluronic acid (HA) modified zeolitic imidazolate framework-8 (ZIF-8) drug-repurposing nanoplatform (HA/ZIF-8@BPP/Gem) against pancreatic cancer through the co-delivery of the antitussive benproperine phosphate (BPP) and gemcitabine (Gem). Using cell lines, patient-derived xenograft models, and orthotopic tumor models, we demonstrated that BPP and Gem, rapidly released from the nanoplatform in the acidic tumor microenvironment, exhibited synergistic cytotoxicity without causing significant biochemical abnormalities or organ toxicity.

View Article and Find Full Text PDF

Gold thin films play a vital role in a wide range of applications due to their outstanding electrical conductivity, chemical stability, and unique optical properties. They are indispensable in electronic and optoelectronic devices where achieving low contact resistance and high durability is critical. In this study, a technique for fabricating transferable ultrasmooth gold thin films is introduced, in which graphite is used as a mask.

View Article and Find Full Text PDF

Unlabelled: Antimicrobial resistance is an escalating global health crisis, underscoring the urgent need for timely and targeted therapies to ensure effective clinical treatment. We developed a machine learning model based on metagenomic next-generation sequencing (mNGS) for rapid antimicrobial susceptibility prediction (mNGS-based AST), which was tailored to five ESKAPEE bacteria: , , , and . However, the clinical utility remained unvalidated.

View Article and Find Full Text PDF

The study delves into the microbial carbon pump (MCP) within the sediments of kelp aquaculture zones, focusing on its influence on the turnover of recalcitrant dissolved organic carbon (RDOC). Following kelp harvest, significant alterations in the microbial community structure were noted, with a decrease in complexity and heterogeneity within co-occurrence networks potentially impacting RDOC production efficiency. Metabolic models constructed identified four key microbial lineages crucial for RDOC turnover, with their abundance observed to decrease post-harvest.

View Article and Find Full Text PDF

Selective autophagy is a finely regulated degradation pathway that can either promote or suppress cancer progression depending on its specific target cargoes. In this study, we report that transmembrane 9 superfamily member 1 (TM9SF1) suppresses colorectal cancer metastasis via selective autophagic degradation of Vimentin. Tm9sf1 knockout significantly increases tumor numbers and size, as well as enhances tumor invasion in colorectal cancer model.

View Article and Find Full Text PDF

Meniscus injuries are challenging to treat due to the tissue heterogeneity and limited treatment efficacy. Understanding meniscus cell migration, crucial for healing, remains incomplete, especially its zonal dependency. This study explores how epigenetic mechanisms affect meniscus cell migration under inflammation, focusing on healing implications.

View Article and Find Full Text PDF

Background: Prostate Tumor Overexpressed 1 (PTOV1) is overexpressed and associated with malignant phenotypes in various types of tumors. However, the detailed roles of PTOV1 and its underlying mechanism in CRC remain unclear.

Methods: The clinical significance of PTOV1 was assessed in clinical databases and CRC samples.

View Article and Find Full Text PDF

Macrophages play important roles in maintaining intestinal homeostasis and in the pathogenesis of inflammatory bowel diseases (IBDs). However, the underlying mechanisms that govern macrophage-mediated inflammation are still largely unknown. In this study, we report that RNF128 is downregulated in proinflammatory macrophages.

View Article and Find Full Text PDF

Hypertensive nephropathy (HN) is a leading cause of chronic kidney disease (CKD) and end-stage renal disease (ESRD), contributing to significant morbidity, mortality, and rising healthcare costs. In this review article, we explore the role of epigenetic mechanisms in HN progression and their potential therapeutic implications. We begin by examining key epigenetic modifications-DNA methylation, histone modifications, and non-coding RNAs-observed in kidney disease.

View Article and Find Full Text PDF
Article Synopsis
  • * Polyacrylamide hydrogels with varying stiffness (3 kPa and 10 kPa) were found to enhance podocyte adhesion, differentiation, and viability, while a softer hydrogel (0.7 kPa) led to cell loss.
  • * The research highlights the importance of matrix stiffness on molecular responses, suggesting that using hydrogels that mimic kidney tissue stiffness can improve kidney tissue engineering and disease modeling.
View Article and Find Full Text PDF

Meniscus injuries pose significant challenges in clinical settings, primarily due to the intrinsic heterogeneity of the tissue and the limited efficacy of current treatments. Endogenous cell migration is crucial for the healing process, yet the regulatory mechanisms of meniscus cell migration and its zonal dependency within the meniscus are not fully understood. Thus, this study investigates the role of epigenetic mechanisms in governing meniscus cell migration under inflammatory conditions, with a focus on their implications for injury healing and regeneration.

View Article and Find Full Text PDF

Temozolomide (TMZ) stands as the primary chemotherapeutic drug utilized in clinical glioma treatment, particularly for high-grade glioblastoma (GBM). However, the emergence of TMZ resistance in GBM poses a significant hurdle to its clinical efficacy. Our objective was to elucidate the role of deubiquitinating enzymes (DUBs) in GBM cell resistance to TMZ.

View Article and Find Full Text PDF

Covalent organic framework (COF) has attracted increasing interest in photocatalytic CO reduction, but it remains a challenge to achieve high conversion efficiency owing to the insufficient active site and fast charge recombination. Rationally optimizing the electronic structures of COF to regulate the local charge of active sites precisely is the key point to improving catalytic performance. Herein, intercalated single Co sites coordinated by imine-N motifs have been designed by using trinuclear copper-based imine-COFs with distinct electronic moieties via a molecular engineering strategy.

View Article and Find Full Text PDF

The modification and recognition of 5-methylcytosine (m5C) are involved in the initiation and progression of various tumor types. However, the precise role and potential mechanism of Y-box-binding protein 1 (YBX1) in esophageal squamous cell carcinoma (ESCC) remains unclear. Here, it is found that YBX1 is frequently upregulated in ESCC compared with matched nontumor tissues.

View Article and Find Full Text PDF

Classical friction laws traditionally assume that the friction between solid pairs remains constant with a given normal load. However, our study has unveiled a remarkable deviation from conventional wisdom. In this paper, we discovered that altering the loading mode of micro graphite flakes led to significant changes in the lateral friction under identical normal loads.

View Article and Find Full Text PDF
Article Synopsis
  • Endometrial cancer (EC) is a common type of cancer in women, and researchers are studying how a group of proteins called HOXs might be involved in it.
  • They used data from a cancer database to look for changes in HOX proteins and their effects on EC growth and the immune system.
  • The study found that HOXs could be important for understanding EC and might help in finding new ways to treat it in the future.
View Article and Find Full Text PDF

The uncontrollable distribution of antitumor agents remains a large obstacle for specific and efficient cancer theranostics; thus, efficient construction of tumor-specific systems is highly desirable. In this work, a general design of tumor stimulus-activatable pretheranostic agents was put forward via a series of structures-tunable triphenylamine derivatives (, , and ) with phenothiazine, benzothiazine, and thiomorpholine as identifying groups of hypochlorite (HClO), respectively. Notably, the sulfur atom in phenothiazine of was more easily oxidized to sulfoxide groups by HClO, transforming into an electron acceptor to form an excellent push-pull electronic system, which was beneficial to a large redshift of absorbance and emission wavelengths.

View Article and Find Full Text PDF

The accumulation of lipid droplets (LDs) in hepatocytes is the main pathogenesis in nonalcoholic fatty liver disease (NAFLD), which is also the key risk factor for the progression of hepatocellular carcinoma (HCC). LDs behaviors are demonstrated to be associated with HCC advancement, and are tightly regulated by a subset protein localized on the surface of LDs. However, the role of LDs-localized protein in HCC has been rarely investigated.

View Article and Find Full Text PDF

NSUN2 is a nuclear RNA methyltransferase which catalyzes 5-methylcytosine (m5C), a posttranscriptional RNA modification. Aberrant m5C modification has been implicated in the development of multiple malignancies. However, its function in pancreatic cancer (PC) needs to be elucidated.

View Article and Find Full Text PDF

This study reports the development of a Tb-metal-organic framework (Tb-MOF)-based fluorescent platform for the detection of propyl gallate (PG). The Tb-MOF using 5-boronoisophthalic acid (5-bop) as the ligand exhibited multiple emissions at 490, 543, 585, and 622 nm under an excitation wavelength of 256 nm. The fluorescence of Tb-MOF was selectively and significantly weakened in the presence of PG due to the special nucleophilic reaction between the boric acid of Tb-MOF and o-diphenol hydroxyl of PG, and the combined effect of static quenching and internal filtering.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC), which has become one of the most significant malignancies causing cancer-related mortality, presents genetic and phenotypic heterogeneity that makes predicting prognosis challenging. Aging-related genes have been increasingly reported as significant risk factors for many kinds of malignancies, including HCC. In this study, we comprehensively dissected the features of transcriptional aging-relevant genes in HCC from multiple perspectives.

View Article and Find Full Text PDF

Recent studies highlighted the functional role of protein arginine methyltransferases (PRMTs) catalyzing the methylation of protein arginine in malignant progression of various tumors. Stratification the subtypes of hepatocellular carcinoma (HCC) is fundamental for exploring effective treatment strategies. Here, we aim to conduct a comprehensive analysis of PRMTs with bioinformatic tools to identify novel biomarkers for HCC subtypes classification and prognosis prediction, which may be potential ideal targets for therapeutic intervention.

View Article and Find Full Text PDF

Photocatalytic CO conversion into value-added chemicals is a promising route but remains challenging due to poor product selectivity. Covalent organic frameworks (COFs) as an emerging class of porous materials are considered as promising candidates for photocatalysis. Incorporating metallic sites into COF is a successful strategy to realize high photocatalytic activities.

View Article and Find Full Text PDF

SARS-CoV-2 causes a spectrum of clinical symptoms from respiratory damage to gastrointestinal disorders. Intestinal infection of SARS-CoV-2 triggers immune response. However, the cellular mechanism that how SARS-CoV-2 initiates and induces intestinal immunity is not understood.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is a common malignancy with high mortality worldwide. Despite advancements in diagnosis and treatment in recent years, there is still an urgent unmet need to explore the underlying mechanisms and novel prognostic markers. Anoikis has received considerable attention because of its involvement in the progression of human malignancies.

View Article and Find Full Text PDF