Pancreatic adenocarcinoma (PDAC) is a highly aggressive neoplasm characterized by limited therapeutic options, particularly in the realm of immunotherapy. This study aims to improve prognosis prediction to guide therapeutic decision-making, and to identify novel targets for immunotherapy of PDAC. We conducted Cox and LASSO regression analyses to develop immune-related gene signature and corresponding nomogram, and the robustness of these signatures was demonstrated using multiple approaches.
View Article and Find Full Text PDFOvercoming immunosuppression in the tumor microenvironment (TME) is crucial for developing novel cancer immunotherapies. Here, we report that IL-16 administration enhances the polarization of T helper 1 (Th1) cells by inhibiting glutamine catabolism through the downregulation of glutaminase in CD4 T cells and increases the production of Th1 effector cytokine IFN-γ, thus improving anti-tumor immune responses. Moreover, we find that establishing an IL-16-dependent, Th1-dominant TME relies on mast cell-produced histamine and results in the increased expression of the CXCR3 ligands in tumor-associated macrophages (TAM), thereby improving the therapeutic effectiveness of immune checkpoint blockade (ICB).
View Article and Find Full Text PDFAccurate counting of crop plants is essential for agricultural science, particularly for yield forecasting, field management, and experimental studies. Traditional methods are labor-intensive and prone to errors. Unmanned Aerial Vehicle (UAV) technology offers a promising alternative; however, varying UAV altitudes can impact image quality, leading to blurred features and reduced accuracy in early maize seedling counts.
View Article and Find Full Text PDFRheumatoid arthritis (RA), a chronic inflammatory joint disease causing permanent disability, involves exosomes, nanosized mammalian extracellular particles. Circular RNA (circRNA) serves as a biomarker in RA blood samples. This research screened differentially expressed circRNAs in RA patient plasma exosomes for novel diagnostic biomarkers.
View Article and Find Full Text PDFReducing lattice thermal conductivity through external modulation techniques such as defect engineering may potentially interfere with electronic transport. Materials with intrinsically low lattice thermal conductivity have the potential to decouple the control of lattice heat transport and electronic transport, which is of great significance in the field of thermoelectric energy conversion. This paper reviews the origin of intrinsically low lattice thermal conductivity, which is directly related to three physical quantities (heat capacity, phonon group velocity, and phonon relaxation time) and is ultimately reflected in the lattice structure and bonding characteristics.
View Article and Find Full Text PDFLight fields carry a wealth of information, including intensity, spectrum, and polarization. However, standard cameras capture only the intensity, disregarding other valuable information. While hyperspectral and polarimetric imaging systems capture spectral and polarization information, respectively, in addition to intensity, they are often bulky, slow, and costly.
View Article and Find Full Text PDFPhytother Res
September 2024
Pancreatic adenocarcinoma (PDAC) is one of the most lethal malignant tumors with an urgent need for precision medicine strategies. The present study seeks to assess the antitumor effects of fisetin, and characterize its impact on PDAC. Multi-omic approaches include proteomic, transcriptomic, and metabolomic analyses.
View Article and Find Full Text PDFA novel deoxygenative alkynylation of amides promoted by a synergistic action of a divalent rare-earth element and a transition metal has been developed. In this method, α-alkynyl substituted amines are synthesized from unactivated amides and alkynes in a single transformation. Broad substrate scope and excellent selectivity for CO cleavage has been demonstrated.
View Article and Find Full Text PDFJ Phys Chem Lett
July 2024
We investigate the electronic structure and linear and nonlinear [second-harmonic generation (SHG)] spectra of the NbOCl monolayer, bilayer, and bulk by using a real-time first-principles approach based on many-body theory. First, the interlayer couplings between NbOCl layers are very weak, due to the relatively large interlayer distance, saturation of the p orbital of Cl atoms, and high degree of localization of charge density around the Nb atom for both the lowest conduction band and the highest valence band. Second, the quasiparticle gaps and exciton binding energy for the three systems show layer-dependent features and decrease with an increase in layer thickness.
View Article and Find Full Text PDFSemiconductors with long-range interactions (LRI) due to resonant bonding exhibit delocalized electronic states and low lattice thermal conductivity, contributing to the efficiency of heat-to-electricity conversion. Here, we build a descriptor for high-throughput screening of LRI materials from the second-order interaction force constants. We identify 75 semiconducting candidates from the binary compounds in the MatHub-3d database that contain LRI.
View Article and Find Full Text PDFPhys Chem Chem Phys
May 2024
Intrinsic half-metallic nanomaterials with 100% spin polarization are highly demanded for next-generation spintronic devices. Here, by using first-principles calculations, we have designed a class of new two-dimensional (2D) p-type half-metals, MSiN (M = Al, Ga, In and Tl), which show high mechanical, thermal and dynamic stabilities. MSiN not only have ultrawide electronic bandgaps for spin-up channels in the range of 4.
View Article and Find Full Text PDFBackground: It is widely acknowledged that dietary habits have profound impacts on human health and diseases. As the most important sweeteners and energy sources in human diets, hexoses take part in a broad range of physiopathological processes. In recent years, emerging evidence has uncovered the crucial roles of hexoses, such as glucose, fructose, mannose, and galactose, in controlling the differentiation or function of immune cells.
View Article and Find Full Text PDFStrigolactones (SLs) are plant hormones that regulate several key agronomic traits, including shoot branching, leaf senescence, and stress tolerance. The artificial regulation of SL biosynthesis and signaling has been considered as a potent strategy in regulating plant architecture and combatting the infection of parasitic weeds to help improve crop yield. DL1b is a previously reported SL receptor inhibitor molecule that significantly promotes shoot branching.
View Article and Find Full Text PDFThe pernicious parasitism exhibited by root parasitic weeds such as and poses substantial peril to agricultural productivity and global food security. This deleterious phenomenon hinges upon the targeted induction of the signaling molecule strigolactones (SLs). Consequently, the identification of prospective SL antagonists holds significant promise in the realm of mitigating the infection of these pernicious weeds.
View Article and Find Full Text PDFTo identify the value of salivary gland ultrasound (SGUS) combined with magnetic resonance imaging (MRI) and magnetic resonance sialography (MRS) in predicting the results of labial salivary gland biopsy (LSGB) in patients with suspected primary Sjögren syndrome (pSS), and construct a nomogram model to predict LSGB results. A total of 181 patients who were admitted with suspected pSS from December 2018 to April 2023 were examined and divided into a training set (n = 120) and a validation set (n = 61). Baseline data of the two groups were examined, and the value of SGUS, MRI, and MRS in predicting LSGB was analyzed.
View Article and Find Full Text PDFBackground: Although substantial efforts have been made by researchers to develop drugs, a disappointing reality is that the emergence of drug resistance is an unavoidable reality for the majority of patients. In recent years, emerging evidence suggests a connection between drug resistance and immune dysregulation.
Summary: As a ubiquitously distributed, versatile innate immune cell, macrophages play essential roles in maintaining tissue homeostasis in a steady state.
Background: Rheumatoid arthritis (RA) is a chronic inflammatory disease that causes disability worldwide. Exosomes released by fibroblast-like synoviocytes in RA (RA-FLSs-Exos) play a role in the development of RA, and circular RNAs (circRNAs) are important for RA progression. This study aimed to investigate the molecular mechanisms underlying the effects of RA-FLSs-Exos in RA and identify the potential pathway responsible for these effects.
View Article and Find Full Text PDFJ Org Chem
February 2024
We report the first palladium-catalyzed decarbonylative alkynylation of carboxylic-phosphoric anhydrides via highly selective C(O)-O bond cleavage. Carboxylic-phosphoric anhydrides are highly active carboxylic acid derivatives, which are generated through activating carboxylic acids using phosphates by esterification or direct dehydrogenative coupling with phosphites. Highly valuable internal alkynes have been generated by the present method, and the efficiency of this approach has been demonstrated through a wide substrate scope and excellent functional group tolerance.
View Article and Find Full Text PDFNonlinear optical (NLO) crystals based on oxides typically have wide bandgaps and large laser damage thresholds (LDTs), which are important for generating high-power and continuous terahertz radiation. Recently, a new family of NLO materials α-ABB'O including LiTiTeO (LTTO) with a strong second harmonic generation (SHG) efficiency of 26 × KHPO (KDP) and a large LDT of 550 MW cm were reported. Herein, we systematically study the electronic structures and NLO properties of α-ABB'O (A = Li, Na, K; B = Ti, Zr, Hf; B' = Se, Te) to explore the relationship between the structure and SHG coefficient.
View Article and Find Full Text PDFJ Phys Chem Lett
December 2023
Chalcogenide perovskites provide a promising avenue for nontoxic, stable thermoelectric materials. Here, the thermal transport and thermoelectric properties of BaZrS as a typical orthorhombic perovskite are investigated. An extremely low lattice thermal conductivity κ of 1.
View Article and Find Full Text PDFPhys Chem Chem Phys
December 2023
Synthesizing SnO composite nanostructures via a facile one-step method has been proven to be a great challenge. By adjusting operating variables, such as the reaction solution's pH and solvent type, several SnO nanostructures, in particular, a function-matching SnO hybrid structure composed of irregular zero-dimensional nanoparticles (NPs) and two-dimensional nanosheets (NSs), could be created. The as-prepared SnO composites were then characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscope (SEM), and diffuse reflectance spectroscopy (DRS) to determine their physical properties.
View Article and Find Full Text PDFThe search for lead-free perovskite materials has triggered intensive interest. Here, we study the electronic structures and optical properties of cation-deficient Ruddlesden-Popper oxysulfide perovskites LnTiOS (Ln = Sc, Y, or La), with a tunable band gap of 1.45-2.
View Article and Find Full Text PDFBackground: Pancreatic cancer stem cells (CSCs) promote pancreatic ductal adenocarcinoma (PDAC) tumorigenesis and chemoresistance. Cyclin-dependent kinase 1 (CDK1) plays an important role in tumor initiation in other tumors, but the function of CDK1 in PDAC remains unclear. Fisetin is a bioactive flavonoid with anti-tumor properties in multiple tumors, while its function in CSCs remains elusive.
View Article and Find Full Text PDF