Front Bioeng Biotechnol
July 2025
Introduction: Echocardiography is a first-line noninvasive test for diagnosing coronary artery disease (CAD), but it depends on time-consuming visual assessments by experts.
Methods: This study constructed an echocardiographic video-driven multi-task learning model, denoted Intelligent echo for CAD (IE-CAD), to facilitate CAD screening and stenosis grading. A 3DdeeplabV3+ backbone and multi-task learning were simultaneously incorporated into the core frame of the IE-CAD model to capture the dynamic myocardial contours.
Background: Accurate measurement of cardiac structure and function is the basis of diagnosis of cardiac diseases, but it is time-consuming and empirically-dependent. This study attempted to propose a deep learning (DL) interpretation of cardiac structure and function.
Methods: The training dataset consisted of 416 video loops and 892 Doppler images drawn from 141 patients undergoing clinical echocardiography from 2020 to 2021.
Background: Echocardiography (echo) has become an indispensable tool in modern cardiology, offering real-time imaging that helps clinicians evaluate heart function and identify abnormalities. Despite these advantages, the acquisition of high-quality echo is time-consuming, labor-intensive, and highly subjective.
Purpose: The objective of this study is to introduce a comprehensive system for the automated quality control (QC) of echo videos.
Eur Heart J Imaging Methods Pract
October 2024
Background: Left ventricular opacification (LVO) improves the accuracy of left ventricular ejection fraction (LVEF) by enhancing the visualization of the endocardium. Manual delineation of the endocardium by sonographers has observer variability. Artificial intelligence (AI) has the potential to improve the reproducibility of LVO to assess LVEF.
View Article and Find Full Text PDFLesion segmentation in ultrasound images is an essential yet challenging step for early evaluation and diagnosis of cancers. In recent years, many automatic CNN-based methods have been proposed to assist this task. However, most modern approaches often lack capturing long-range dependencies and prior information making it difficult to identify the lesions with unfixed shapes, sizes, locations, and textures.
View Article and Find Full Text PDFComput Biol Med
March 2024
Thyroid nodule classification and segmentation in ultrasound images are crucial for computer-aided diagnosis; however, they face limitations owing to insufficient labeled data. In this study, we proposed a multi-view contrastive self-supervised method to improve thyroid nodule classification and segmentation performance with limited manual labels. Our method aligns the transverse and longitudinal views of the same nodule, thereby enabling the model to focus more on the nodule area.
View Article and Find Full Text PDFIEEE Trans Med Imaging
December 2023
Benefiting from the massive labeled samples, deep learning-based segmentation methods have achieved great success for two dimensional natural images. However, it is still a challenging task to segment high dimensional medical volumes and sequences, due to the considerable efforts for clinical expertise to make large scale annotations. Self/semi-supervised learning methods have been shown to improve the performance by exploiting unlabeled data.
View Article and Find Full Text PDFMed Image Anal
July 2023
Sensorless freehand 3D ultrasound (US) reconstruction based on deep networks shows promising advantages, such as large field of view, relatively high resolution, low cost, and ease of use. However, existing methods mainly consider vanilla scan strategies with limited inter-frame variations. These methods thus are degraded on complex but routine scan sequences in clinics.
View Article and Find Full Text PDFComput Methods Programs Biomed
May 2023
Background And Objective: Deep learning models often suffer from performance degradations when deployed in real clinical environments due to appearance shifts between training and testing images. Most extant methods use training-time adaptation, which almost require target domain samples in the training phase. However, these solutions are limited by the training process and cannot guarantee the accurate prediction of test samples with unforeseen appearance shifts.
View Article and Find Full Text PDFMed Image Anal
February 2023
Accurate estimation of ejection fraction (EF) from echocardiography is of great importance for evaluation of cardiac function. It is usually obtained by the Simpson's bi-plane method based on the segmentation of the left ventricle (LV) in two keyframes. However, obtaining accurate EF estimation from echocardiography is challenging due to (1) noisy appearance in ultrasound images, (2) temporal dynamic movement of myocardium, (3) sparse annotation of the full sequence, and (4) potential quality degradation during scanning.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
December 2022
Quantification of left ventricular (LV) ejection fraction (EF) from echocardiography depends upon the identification of endocardium boundaries as well as the calculation of end-diastolic (ED) and end-systolic (ES) LV volumes. It's critical to segment the LV cavity for precise calculation of EF from echocardiography. Most of the existing echocardiography segmentation approaches either only segment ES and ED frames without leveraging the motion information, or the motion information is only utilized as an auxiliary task.
View Article and Find Full Text PDFFront Cardiovasc Med
September 2022
Background: Contrast and non-contrast echocardiography are crucial for cardiovascular diagnoses and treatments. Correct view classification is a foundational step for the analysis of cardiac structure and function. View classification from all sequences of a patient is laborious and depends heavily on the sonographer's experience.
View Article and Find Full Text PDFMed Image Anal
July 2022
Ultrasound (US) imaging is widely used for anatomical structure inspection in clinical diagnosis. The training of new sonographers and deep learning based algorithms for US image analysis usually requires a large amount of data. However, obtaining and labeling large-scale US imaging data are not easy tasks, especially for diseases with low incidence.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
July 2022
Regional cardiac motion scoring aims to classify the motion status of each myocardium segment into one of the four categories (normal, hypokinetic, akinetic, and dyskinetic) from multiple short-axis MR sequences. It is essential for prognosis and early diagnosis for various cardiac diseases. However, the complex motion procedure of the myocardium and the invisible pattern differences pose great challenges, leading to low performance for automatic methods.
View Article and Find Full Text PDFMulti-sequence cardiac magnetic resonance (CMR) provides essential pathology information (scar and edema) to diagnose myocardial infarction. However, automatic pathology segmentation can be challenging due to the difficulty of effectively exploring the underlying information from the multi-sequence CMR data. This paper aims to tackle the scar and edema segmentation from multi-sequence CMR with a novel auto-weighted supervision framework, where the interactions among different supervised layers are explored under a task-specific objective using reinforcement learning.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
January 2022
The ultrasound (US) screening of the infant hip is vital for the early diagnosis of developmental dysplasia of the hip (DDH). The US diagnosis of DDH refers to measuring alpha and beta angles that quantify hip joint development. These two angles are calculated from key anatomical landmarks and structures of the hip.
View Article and Find Full Text PDFIEEE Trans Med Imaging
July 2021
Accurate standard plane (SP) localization is the fundamental step for prenatal ultrasound (US) diagnosis. Typically, dozens of US SPs are collected to determine the clinical diagnosis. 2D US has to perform scanning for each SP, which is time-consuming and operator-dependent.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
September 2021
The outbreak of COVID-19 around the world has caused great pressure to the health care system, and many efforts have been devoted to artificial intelligence (AI)-based analysis of CT and chest X-ray images to help alleviate the shortage of radiologists and improve the diagnosis efficiency. However, only a few works focus on AI-based lung ultrasound (LUS) analysis in spite of its significant role in COVID-19. In this work, we aim to propose a novel method for severity assessment of COVID-19 patients from LUS and clinical information.
View Article and Find Full Text PDFComput Med Imaging Graph
September 2020
Quantification of cardiac left ventricle has become a hot topic due to its great significance in clinical practice. Many efforts have been devoted to LV quantification and obtained promising performance with the help of various deep neural networks when validated on a group of samples. However, none of them can provide sample-level confidence of the results, i.
View Article and Find Full Text PDFIEEE Trans Med Imaging
October 2019
Adequate medical images are often indispensable in contemporary deep learning-based medical imaging studies, although the acquisition of certain image modalities may be limited due to several issues including high costs and patients issues. However, thanks to recent advances in deep learning techniques, the above tough problem can be substantially alleviated by medical images synthesis, by which various modalities including T1/T2/DTI MRI images, PET images, cardiac ultrasound images, retinal images, and so on, have already been synthesized. Unfortunately, the arterial spin labeling (ASL) image, which is an important fMRI indicator in dementia diseases diagnosis nowadays, has never been comprehensively investigated for the synthesis purpose yet.
View Article and Find Full Text PDFMed Image Anal
January 2018
Cardiac left ventricle (LV) quantification is among the most clinically important tasks for identification and diagnosis of cardiac disease. However, it is still a task of great challenge due to the high variability of cardiac structure across subjects and the complexity of temporal dynamics of cardiac sequences. Full quantification, i.
View Article and Find Full Text PDFIEEE Trans Med Imaging
October 2017
Cardiac indices estimation is of great importance during identification and diagnosis of cardiac disease in clinical routine. However, estimation of multitype cardiac indices with consistently reliable and high accuracy is still a great challenge due to the high variability of cardiac structures and the complexity of temporal dynamics in cardiac MR sequences. While efforts have been devoted into cardiac volumes estimation through feature engineering followed by a independent regression model, these methods suffer from the vulnerable feature representation and incompatible regression model.
View Article and Find Full Text PDFIEEE Trans Image Process
November 2014
Blind image quality assessment (BIQA) aims to evaluate the perceptual quality of a distorted image without information regarding its reference image. Existing BIQA models usually predict the image quality by analyzing the image statistics in some transformed domain, e.g.
View Article and Find Full Text PDF