Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Background: Left ventricular opacification (LVO) improves the accuracy of left ventricular ejection fraction (LVEF) by enhancing the visualization of the endocardium. Manual delineation of the endocardium by sonographers has observer variability. Artificial intelligence (AI) has the potential to improve the reproducibility of LVO to assess LVEF.
Objectives: The aim was to develop an AI model and evaluate the feasibility and reproducibility of LVO in the assessment of LVEF.
Methods: This retrospective study included 1305 echocardiography of 797 patients who had LVO at the Department of Ultrasound Medicine, Union Hospital, Huazhong University of Science and Technology from 2013 to 2021. The AI model was developed by 5-fold cross validation. The validation datasets included 50 patients prospectively collected in our center and 42 patients retrospectively collected in the external institution. To evaluate the differences between LV function determined by AI and sonographers, the median absolute error (MAE), spearman correlation coefficient, and intraclass correlation coefficient (ICC) were calculated.
Results: In LVO, the MAE of LVEF between AI and manual measurements was 2.6% in the development cohort, 2.5% in the internal validation cohort, and 2.7% in the external validation cohort. Compared with two-dimensional echocardiography (2DE), the left ventricular (LV) volumes and LVEF of LVO measured by AI correlated significantly with manual measurements. AI model provided excellent reliability for the LV parameters of LVO (ICC > 0.95).
Conclusions: AI-assisted LVO enables more accurate identification of the LV endocardium and reduces observer variability, providing a more reliable way for assessing LV function.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11179548 | PMC |
http://dx.doi.org/10.1177/20552076241260557 | DOI Listing |