98%
921
2 minutes
20
Aims: To address the limitations of traditional diagnostic methods for mitral valve prolapse (MVP), specifically fibroelastic deficiency (FED) and Barlow's disease (BD), by introducing an automated diagnostic approach utilizing multi-view echocardiographic sequences and deep learning.
Methods And Results: An echocardiographic data set, collected from Zhongshan Hospital, Fudan University, containing apical 2 chambers (A2C), apical 3 chambers (A3C), and apical 4 chambers (A4C) views, was employed to train the deep learning models. We separately trained view-specific and view-agnostic deep neural network models, which were denoted as MVP-VS and MVP view-agonistic (VA), for MVP diagnosis. Diagnostic accuracy, precision, sensitivity, F1-score, and specificity were evaluated for both BD and FED phenotypes. MVP-VS demonstrated an overall diagnostic accuracy of 0.94 for MVP. In the context of BD diagnosis, precision, sensitivity, F1-score, and specificity were 0.83, 1.00, 0.90, and 0.92, respectively. For FED diagnosis, the metrics were 1.00, 0.83, 0.91, and 1.00. MVP-VA exhibited an overall accuracy of 0.95, with BD-specific metrics of 0.85, 1.00, 0.92, and 0.94 and FED-specific metrics of 1.00, 0.83, 0.91, and 1.00. In particular, the MVP-VA model using mixed views for training demonstrated efficient diagnostic performance, eliminating the need for repeated development of MVP-VS models and improving the efficiency of the clinical pipeline by using arbitrary views in the deep learning model.
Conclusion: This study pioneers the integration of artificial intelligence into MVP diagnosis and demonstrates the effectiveness of deep neural networks in overcoming the challenges of traditional diagnostic methods. The efficiency and accuracy of the proposed automated approach suggest its potential for clinical applications in the diagnosis of valvular heart disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11519029 | PMC |
http://dx.doi.org/10.1093/ehjimp/qyae086 | DOI Listing |
J Oral Biol Craniofac Res
August 2025
Neura Integrasi Solusi, Jl. Kebun Raya No. 73, Rejowinangun, Kotagede, Yogyakarta, 55171, Indonesia.
Background: Periodontal disease is an inflammatory condition causing chronic damage to the tooth-supporting connective tissues, leading to tooth loss in adults. Diagnosing periodontitis requires clinical and radiographic examinations, with panoramic radiographs crucial in identifying and assessing its severity and staging. Convolutional Neural Networks (CNNs), a deep learning method for visual data analysis, and Dense Convolutional Networks (DenseNet), which utilize direct feed-forward connections between layers, enable high-performance computer vision tasks with reduced computational demands.
View Article and Find Full Text PDFFront Genet
August 2025
Hunan Provincial Key Laboratory of Finance and Economics Big Data Science and Technology, Hunan University of Finance and Economics, Changsha, China.
RNA N4-acetylcytidine (ac4C) is a crucial chemical modification involved in various biological processes, influencing RNA properties and functions. Accurate prediction of RNA ac4C sites is essential for understanding the roles of RNA molecules in gene expression and cellular regulation. While existing methods have made progress in ac4C site prediction, they still struggle with limited accuracy and generalization.
View Article and Find Full Text PDFFront Vet Sci
August 2025
Pathobiology and Population Science, Royal Veterinary College, Hatfield, United Kingdom.
Diffuse large B-cell lymphoma is the most common type of non-Hodgkin lymphoma (NHL) in humans, accounting for about 30-40% of NHL cases worldwide. Canine diffuse large B-cell lymphoma (cDLBCL) is the most common lymphoma subtype in dogs and demonstrates an aggressive biologic behaviour. For tissue biopsies, current confirmatory diagnostic approaches for enlarged lymph nodes rely on expert histopathological assessment, which is time-consuming and requires specialist expertise.
View Article and Find Full Text PDFVet World
July 2025
Department of Veterinary Science, Faculty of Veterinary Medicine, Rajamangala University of Technology Tawan-OK, Chonburi, Thailand.
Background And Aim: Granulosa cells (GCs) are crucial mediators of follicular development and oocyte competence in goats, with their gene expression profiles serving as potential biomarkers of fertility. However, the lack of a standardized, quantifiable method to assess GC quality using transcriptomic data has limited the translation of such findings into reproductive applications. This study aimed to develop a hybrid deep learning model integrating one-dimensional convolutional neural networks (1DCNNs) and gated recurrent units (GRUs) to classify GCs as fertility-supporting (FS) or non-fertility-supporting (NFS) using single-cell RNA sequencing (scRNA-seq) data.
View Article and Find Full Text PDFMed Phys
September 2025
School of Computer, Electronics and Information, Guangxi University, Nanning, China.
Background: Deformable medical image registration is a critical task in medical imaging-assisted diagnosis and treatment. In recent years, medical image registration methods based on deep learning have made significant success by leveraging prior knowledge, and the registration accuracy and computational efficiency have been greatly improved. Models based on Transformers have achieved better performance than convolutional neural network methods (ConvNet) in image registration.
View Article and Find Full Text PDF