Assessing the mechanical properties of soft tissues holds broad clinical relevance. Advances in flexible electronics offer possibilities for wearable monitoring of tissue stiffness. However, existing technologies often rely on tethered setups or require frequent calibration, restricting their use in ambulatory environments.
View Article and Find Full Text PDFRecent advancements in virtual reality (VR) and augmented reality (AR) have strengthened the bridge between virtual and real worlds via human-machine interfaces. Despite extensive research into biophysical signals, gustation, a fundamental component of the five senses, has experienced limited progress. This work reports a bio-integrated gustatory interface, "e-Taste," to address the underrepresented chemical dimension in current VR/AR technologies.
View Article and Find Full Text PDFBackground: Refractory melasma remains a challenge in dermatology, necessitating the exploration of innovative treatments.
Aims: This study aims to evaluate the efficacy and safety of combining radiofrequency microneedling (RFM) with Cysteamine cream, applied both in-office and as a part of a home-care regimen, to treat refractory melasma.
Patients/methods: A vehicle-controlled, split-face trial was conducted on 30 Fitzpatrick skin types III and IV participants.
Fundam Res
January 2025
Detecting and diagnosing neurological diseases in modern healthcare presents substantial challenges that directly impact patient outcomes. The complex nature of these conditions demands precise and quantitative monitoring of disease-associated biomarkers in a continuous, real-time manner. Current chemical sensing strategies exhibit restricted clinical effectiveness due to labor-intensive laboratory analysis prerequisites, dependence on clinician expertise, and prolonged and recurrent interventions.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
October 2023
Chemical biomarkers in the central nervous system can provide valuable quantitative measures to gain insight into the etiology and pathogenesis of neurological diseases. Glutamate, one of the most important excitatory neurotransmitters in the brain, has been found to be upregulated in various neurological disorders, such as traumatic brain injury, Alzheimer's disease, stroke, epilepsy, chronic pain, and migraines. However, quantitatively monitoring glutamate release in situ has been challenging.
View Article and Find Full Text PDFAdv Funct Mater
February 2023
Wearable electronics play important roles in noninvasive, continuous, and personalized monitoring of multiple biosignals generated by the body. To unleash their full potential for next-generation human centered bio-integrated electronics, the wireless sensing capability is a desirable feature. However, state-of-the-art wireless sensing technologies exploit rigid and bulky electronic modules for power supply, signal generation, and data transmission.
View Article and Find Full Text PDFNat Biomed Eng
October 2023
Fully implantable wireless systems for the recording and modulation of neural circuits that do not require physical tethers or batteries allow for studies that demand the use of unconstrained and freely behaving animals in isolation or in social groups. Moreover, feedback-control algorithms that can be executed within such devices without the need for remote computing eliminate virtual tethers and any associated latencies. Here we report a wireless and battery-less technology of this type, implanted subdermally along the back of freely moving small animals, for the autonomous recording of electroencephalograms, electromyograms and body temperature, and for closed-loop neuromodulation via optogenetics and pharmacology.
View Article and Find Full Text PDFA key challenge for achieving continuous biosensing with existing technologies is the poor reusability of the biorecognition interface due to the difficulty in the dissociation of analytes from the bioreceptors upon surface saturation. In this work, we introduce a regeneratable biosensing scheme enabled by allosteric regulation of a re-engineered pH sensitive anti-cocaine aptamer. The aptamer can regain its affinity with target analytes due to proton-promoted duplex-to-triplex transition in DNA configuration followed by the release of adsorbed analytes.
View Article and Find Full Text PDFPhysically transient forms of electronics enable unique classes of technologies, ranging from biomedical implants that disappear through processes of bioresorption after serving a clinical need to internet-of-things devices that harmlessly dissolve into the environment following a relevant period of use. Here, we develop a sustainable manufacturing pathway, based on ultrafast pulsed laser ablation, that can support high-volume, cost-effective manipulation of a diverse collection of organic and inorganic materials, each designed to degrade by hydrolysis or enzymatic activity, into patterned, multi-layered architectures with high resolution and accurate overlay registration. The technology can operate in patterning, thinning and/or cutting modes with (ultra)thin eco/bioresorbable materials of different types of semiconductors, dielectrics, and conductors on flexible substrates.
View Article and Find Full Text PDFDynamic shape-morphing soft materials systems are ubiquitous in living organisms; they are also of rapidly increasing relevance to emerging technologies in soft machines, flexible electronics and smart medicines. Soft matter equipped with responsive components can switch between designed shapes or structures, but cannot support the types of dynamic morphing capabilities needed to reproduce natural, continuous processes of interest for many applications. Challenges lie in the development of schemes to reprogram target shapes after fabrication, especially when complexities associated with the operating physics and disturbances from the environment can stop the use of deterministic theoretical models to guide inverse design and control strategies.
View Article and Find Full Text PDFTracking the concentration of biomarkers in biofluids can provide crucial information about health status. However, the complexity and nonideal form factors of conventional digital wireless schemes impose challenges in realizing biointegrated, lightweight, and miniaturized sensors. Inspired by the working principle of tuning circuits in radio frequency electronics, this study reports a class of battery-free wireless biochemical sensors: In a resonance circuit, the coupling between a sensing interface and an inductor-capacitor oscillator through a pair of varactor diodes converts a change in electric potential into a modulation in capacitance, resulting in a quantifiable shift of the resonance circuit.
View Article and Find Full Text PDFThe continuous, real-time, and concurrent detection of multiple biomarkers in bodily fluids is of high significance for advanced healthcare. While active, semiconductor-based biochemical sensing platforms provide levels of functionality exceeding those of their conventional passive counterparts, the stability of the active biosensors in the liquid environment for continuous operation remains a challenging topic. This work reports the development of a class of flexible and waterproof field-effect transistor arrays for multiplexed biochemical sensing.
View Article and Find Full Text PDFMicrofluidic technologies have wide-ranging applications in chemical analysis systems, drug delivery platforms, and artificial vascular networks. This latter area is particularly relevant to 3D cell cultures, engineered tissues, and artificial organs, where volumetric capabilities in fluid distribution are essential. Existing schemes for fabricating 3D microfluidic structures are constrained in realizing desired layout designs, producing physiologically relevant microvascular structures, and/or integrating active electronic/optoelectronic/microelectromechanical components for sensing and actuation.
View Article and Find Full Text PDFTo understand the physio-pathological state of patients suffering from chronic diseases, scientists and clinicians need sensors to track chemical signals in real-time. However, the lack of stable, safe, and scalable biochemical sensing platforms capable of continuous operation in liquid environments imposes significant challenges in the timely diagnosis, intervention, and treatment of chronic conditions. This work reports a novel strategy for fabricating waterproof and flexible biochemical sensors with active electronic components, which feature a submicron encapsulation layer derived from monocrystalline Si nanomembranes with a high structural integrity due to the high formation temperature (>1000 °C).
View Article and Find Full Text PDFFlexible electronic/optoelectronic systems that can intimately integrate onto the surfaces of vital organ systems have the potential to offer revolutionary diagnostic and therapeutic capabilities relevant to a wide spectrum of diseases and disorders. The critical interfaces between such technologies and living tissues must provide soft mechanical coupling and efficient optical/electrical/chemical exchange. Here, we introduce a functional adhesive bioelectronic-tissue interface material, in the forms of mechanically compliant, electrically conductive, and optically transparent encapsulating coatings, interfacial layers or supporting matrices.
View Article and Find Full Text PDFTransient forms of electronics, systems that disintegrate, dissolve, resorb, or sublime in a controlled manner after a well-defined operating lifetime, are of interest for applications in hardware secure technologies, temporary biomedical implants, "green" consumer devices and other areas that cannot be addressed with conventional approaches. Broad sets of materials now exist for a range of transient electronic components, including transistors, diodes, antennas, sensors, and even batteries. This work reports the first examples of transient light-emitting diodes (LEDs) that can completely dissolve in aqueous solutions to biologically and environmentally benign end products.
View Article and Find Full Text PDF