Assessing the mechanical properties of soft tissues holds broad clinical relevance. Advances in flexible electronics offer possibilities for wearable monitoring of tissue stiffness. However, existing technologies often rely on tethered setups or require frequent calibration, restricting their use in ambulatory environments.
View Article and Find Full Text PDFNanomicro Lett
October 2023
With the development of artificial intelligence, stiffness sensors are extensively utilized in various fields, and their integration with robots for automated palpation has gained significant attention. This study presents a broad range self-powered stiffness sensor based on the triboelectric nanogenerator (Stiff-TENG) for variable inclusions in soft objects detection. The Stiff-TENG employs a stacked structure comprising an indium tin oxide film, an elastic sponge, a fluorinated ethylene propylene film with a conductive ink electrode, and two acrylic pieces with a shielding layer.
View Article and Find Full Text PDF