98%
921
2 minutes
20
Assessing the mechanical properties of soft tissues holds broad clinical relevance. Advances in flexible electronics offer possibilities for wearable monitoring of tissue stiffness. However, existing technologies often rely on tethered setups or require frequent calibration, restricting their use in ambulatory environments. This study introduces a mechano-acoustic wave sensing technology for automated, wireless elastography. The patch-form sensor maintains conformal contact with the skin, regardless of body motion or deformation. It provides continuous, depth-sensitive estimation of subcutaneous tissue stiffness through real-time surface wave dispersion analysis. Theoretical and experimental investigations on phantom materials and tissues spanning a wide range of Young's modulus (in kilopascals to megapascals) demonstrate the capability of the device to rapidly and robustly evaluate the stiffness at depths up to several centimeters. The device shows compatibility with various tissue models, with results consistent with in-parallel ultrasound elastography measurements. Deployment of the device during exercises confirms its viability for ambulatory monitoring, enabling continuous assessment of variation in tissue stiffness.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12407073 | PMC |
http://dx.doi.org/10.1126/sciadv.ady0534 | DOI Listing |
Int J Med Robot
October 2025
School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China.
Background: The limited workspace and strong magnetic field inside MRI challenge the design of the prostate puncture robot. Simplifying the robot's structure is crucial.
Methods: This paper proposes a parallel cable-driven (PCD) prostate puncture robot, and conducts a preliminary material design.
Orthop Traumatol Surg Res
September 2025
Department of Orthopaedic Surgery, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan. Electronic address:
Objective: The treatment of severe post-traumatic elbow stiffness is extremely complex. Complete open release of the elbow joint and reconstruction of stiffness-related injuries are considered crucial; however, these procedures may lead to elbow instability, particularly chronic instability due to underlying conditions. This retrospective study aimed to assess the outcomes of using an internal joint stabilizer (IJS) to ensure post-release stability in these complex cases.
View Article and Find Full Text PDFEur J Cell Biol
September 2025
The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China. Electronic address:
Cell migration toward stiffer or softer environments (durotaxis) underlies processes from development to cancer metastasis, yet the underlying mechanism and its universality remain unclear. To resolve this, we investigated how traction forces and directional persistence dictate cell migration along stiffness gradients. We utilized tunable PEG hydrogels with stiffness gradients of 1-16 kPa and perturbed contractility (blebbistatin, oligomycin), and adhesion (vinculin mutants), in cancer cells exhibiting opposing durotactic biases.
View Article and Find Full Text PDFSci Adv
September 2025
School of Engineering and Materials Science, Queen Mary University of London, UK.
During heart disease, the cardiac extracellular matrix (ECM) undergoes a structural and mechanical transformation. Cardiomyocytes sense the mechanical properties of their environment, leading to phenotypic remodeling. A critical component of the ECM mechanosensing machinery, including the protein talin, is organized at the cardiomyocyte costamere.
View Article and Find Full Text PDFCancer
September 2025
Radiation Medicine Program, Princess Margaret Cancer Center, Toronto, Ontario, Canada.
Background: The objective of this study was to evaluate whether dosimetric sparing of uninvolved normal tissues, including skin/subcutaneous flaps, affects acute and late toxicities in preoperative image-guided intensity-modulated radiation therapy (IG-IMRT) for lower extremity soft tissue sarcomas (LE-STS).
Methods: Patients with LE-STS from a phase 2 preoperative IG-IMRT trial (flap-sparing-IMRT, 2005-2009) and a prospectively maintained institutional database (standard-IMRT, 2005-2020) were propensity matched by age, sex, tumor size, grade, location, wound closure, and interval from IG-IMRT to surgery; all received 50 Gy in 25 fractions preoperatively. The primary outcome was major wound complication (MWC).