Publications by authors named "Sijia Liang"

Turcz. (), a perennial herb in the Santalaceae family, exhibits potent antibacterial and anti-inflammatory properties. Transcriptome sequencing was performed on one- and two-year-old plants across seedling, flowering, and fruiting stages (all sampled from the same location) using the illumina NovaSeq 6000 platform.

View Article and Find Full Text PDF

This study investigated the role of the nuclear factor of activated T cells c3 (NFATc3) in vascular smooth muscle cells (VSMCs) during aortic aneurysm and dissection (AAD) progression and the underlying molecular mechanisms. Cytoplasmic and nuclear NFATc3 levels were elevated in human and mouse AAD. VSMC-NFATc3 deletion reduced thoracic AAD (TAAD) and abdominal aortic aneurysm (AAA) progression in mice, contrary to VSMC-NFATc3 overexpression.

View Article and Find Full Text PDF

The global dissemination of antibiotic resistance genes (ARGs) presents a significant threat to public health and ecosystems. The Arctic has been contaminated with ARGs due to the global spread of ARGs. However, the remote nature of the Arctic need a comprehensive characterization of the diversity and distribution of ARGs.

View Article and Find Full Text PDF

Purpose: Atherosclerosis (AS) is the leading cause of cardiovascular disease and mortality worldwide. Despite extensive research, there remains an urgent need for novel therapeutic strategies. By integrating genomic data from the Gene Expression Omnibus (GEO) with human atherosclerotic tissues, we identified enrichment of sumoylation pathways in AS, with chromobox 4 (CBX4), a SUMO E3 ligase, being significantly upregulated.

View Article and Find Full Text PDF

Cardiomyopathies comprise a heterogeneous group of cardiac disorders characterized by structural and functional abnormalities in the absence of significant coronary artery disease, hypertension, valvular disease, or congenital defects. Major subtypes include hypertrophic, dilated, arrhythmogenic, and stress-induced cardiomyopathies. Oxidative stress (OS), resulting from an imbalance between reactive oxygen species (ROS) production and antioxidant defenses, has emerged as a key contributor to the pathogenesis of these conditions.

View Article and Find Full Text PDF

As a kind of new pollutants, microplastics (MPs) have aroused public concern due to their widespread presence and potential ecological risks. Lakes, as crucial freshwater ecosystems and important water resources, are particularly vulnerable to MPs pollution. While MPs are known to be unevenly distributed within lakes, their distribution patterns and influencing factors have not been thoroughly understood.

View Article and Find Full Text PDF

The aging of micro- and nanoplastics (MNPs) significantly affects their environmental behavior and ecological impacts in both aquatic and terrestrial ecosystems. This review explored the known effects of aging on MNPs and identified several key perspectives. Firstly, aging can alter the environmental fate and transport of MNPs due to changes in their surface properties.

View Article and Find Full Text PDF

Beyond their roles in adsorbing and transporting pollutants, microplastics (MPs) and nanoplastics (NPs), particularly polystyrene variants (PS-M/NPs), have emerged as potential accelerators for the transformation of coexisting contaminants. This study uncovered a novel environmental phenomenon induced by aged PS-M/NPs and delved into the underlying mechanisms. Our findings revealed that the aged PS-M/NP particles significantly amplified the photodegradation of common cephalosporin antibiotics, and the extent of enhancement was tightly correlated to the molecular structures of cephalosporin antibiotics.

View Article and Find Full Text PDF

Aims: Impairment of nitric oxide (NO) production is a major cause of endothelial dysfunction and hypertension. ClC-5 Cl channel is abundantly expressed in the vascular endothelium. However, it remains unclear how it regulates endothelial function.

View Article and Find Full Text PDF

The glutamate receptor (GLR) serves as a ligand-gated ion channel that plays a vital role in plant growth, development, and stress response. Nevertheless, research on GLRs in cotton is still very limited. The present study conducted a comprehensive analysis of GLRs gene family in cotton.

View Article and Find Full Text PDF

Calcium-dependent protein kinases (CDPKs) act as key signal transduction enzymes in plants, especially in response to diverse stresses, including herbivory. In this study, a comprehensive analysis of the CDPK gene family in upland cotton revealed that GhCPKs are widely expressed in multiple cotton tissues and respond positively to various biotic and abiotic stresses. We developed a strategy for screening insect-resistance genes from a CRISPR-Cas9 mutant library of GhCPKs.

View Article and Find Full Text PDF

Hypertensive cerebrovascular remodeling involves the enlargement of vascular smooth muscle cells (VSMCs), which activates volume-regulated Cl channels (VRCCs). The leucine-rich repeat-containing family 8 A (LRRC8A) has been shown to be the molecular identity of VRCCs. However, its role in vascular remodeling during hypertension is unclear.

View Article and Find Full Text PDF

Aqueous trivalent manganese [Mn(III)], an important reactive intermediate, is ubiquitous in natural surface water containing humic acid (HA). However, the effect of low-molecular-weight organic acids (LMWOAs) on the formation, stability and reactivity of Mn(III) intermediate is still unknown. In this study, six LMWOAs, including oxalic acid (Oxa), salicylic acid (Sal), catechol (Cat), caffeic acid (Caf), gallic acid (Gal) and ethylene diamine tetraacetic acid (EDTA), were selected to investigate the effects of LMWOAs on the degradation of BPA induced by in situ formed Mn(III)-L in the HA/Mn(II) system under light irradiation.

View Article and Find Full Text PDF

The transcriptomic, phenotypic and metabolomic analysis of transgenic plants overexpressing GhMPK31 in upland cotton revealed the regulation of HO burst and the synthesis of defensive metabolites by GhMPK31. Mitogen-activated protein kinases (MAPKs) are a crucial class of protein kinases, which play an essential role in various biological processes in plants. Upland cotton (G.

View Article and Find Full Text PDF

Background & Aims: Accumulating evidence has indicated the presence of mature microRNAs (miR) in the nucleus, but their effects on steatohepatitis remain elusive. We have previously demonstrated that the intranuclear miR-204-3p in macrophages protects against atherosclerosis, which shares multiple risk factors with metabolic dysfunction-associated steatotic liver disease (MASLD). Herein, we aimed to explore the functional significance of miR-204-3p in steatohepatitis.

View Article and Find Full Text PDF

Atherosclerosis (AS), the main contributor to acute cardiovascular events, such as myocardial infarction and ischemic stroke, is characterized by necrotic core formation and plaque instability induced by cell death. The mechanisms of cell death in AS have recently been identified and elucidated. Ferroptosis, a novel iron-dependent form of cell death, has been proven to participate in atherosclerotic progression by increasing endothelial reactive oxygen species (ROS) levels and lipid peroxidation.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates the creation of iron(III)-tetraamidomacrocyclic ligand (Fe-TAML)-based magnetic nanostructures using a method called surfactant-assisted self-assembly (SAS) to improve the ability of Fe-TAML activators to degrade environmental contaminants.
  • - Fe-TAML/CTAB@FeO magnetic nanomaterials were produced by combining specific chemical solutions, which showed improved reactivity in breaking down bisphenol A (BPA) compared to standard Fe-TAML.
  • - The new Fe-TAML/CTAB@FeO nanocomposite can be easily separated from solutions using magnets and reused multiple times, highlighting its potential for cost-effective and sustainable environmental cleanup applications
View Article and Find Full Text PDF

The anti-foreign tissue (transplant rejection) response, mediated by the immune system, has been the biggest obstacle to successful organ transplantation. There are still many enigmas regarding this process and some aspects of the underlying mechanisms driving the immune response against foreign tissues remain poorly understood. Here, we found that a large number of neutrophils and macrophages were attached to the graft during skin transplantation.

View Article and Find Full Text PDF

Insects pose significant challenges in cotton-producing regions. Here, they describe a high-throughput CRISPR/Cas9-mediated large-scale mutagenesis library targeting endogenous insect-resistance-related genes in cotton. This library targeted 502 previously identified genes using 968 sgRNAs, generated ≈2000 T0 plants and achieved 97.

View Article and Find Full Text PDF

Background: Macrophage-derived foam cells are a hallmark of atherosclerosis. Scavenger receptors, including lectin-like oxidized low-density lipoprotein (LDL) receptor-1 (OLR-1), are the principal receptors responsible for the uptake and modification of LDL, facilitating macrophage lipid load and the uptake of oxidized LDL by arterial wall cells. Krüppel-like factor 15 (KLF15) is a transcription factor that regulates the expression of genes by binding to the promoter during transcription.

View Article and Find Full Text PDF

Background: Adelphocoris suturalis (Hemiptera: Miridae) is a notorious agricultural pest, which causes serious economic losses to a diverse range of agricultural crops around the world. The poor understanding of its genomic characteristics has seriously hindered the establishment of sustainable and environment-friendly agricultural pest management through biotechnology and biological insecticides.

Results: Here, we report a chromosome-level assembled genome of A.

View Article and Find Full Text PDF

Background And Purpose: Atherosclerosis induced by cyclosporine A (CsA), an inhibitor of the calcineurin/nuclear factor of activated T cells (NFAT) pathway, is a major concern after organ transplantation. However, the atherosclerotic mechanisms of CsA remain obscure. We previously demonstrated that calcineurin/NFAT signalling inhibition contributes to atherogenesis via suppressing microRNA-204 (miR-204) transcription.

View Article and Find Full Text PDF

In atherosclerosis, macrophage-derived foam cell formation is considered to be a hallmark of the pathological process; this occurs via the uptake of modified lipoproteins. In the present study, we aim to determine the role of transaldolase in foam cell formation and atherogenesis and reveal the mechanisms underlying its role. Bone marrow-derived macrophages (BMDMs) isolated from mice successfully form foam cells after treatment with oxidized low-density lipoprotein (80 μg/mL).

View Article and Find Full Text PDF