Despite significant advancesin osteoimmunology, the mechanistic underpinnings of immune-skeletal crosstalk remain insufficiently characterized, particularly at the molecular and submolecular scales. The present article introduces quantum osteoimmunology as a novel field of research exploring how quantum mechanical phenomena, such as coherence, tunneling, entanglement, and wavefunction superposition, may influence osteoimmune signaling dynamics. It argues that the current deterministic, temporally linear models of immune activation may overlook the probabilistic and non-linear nature of molecular events governed by quantum principles.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2025
Weakening of synaptic transmission at the larval neuromuscular junction triggers two forms of homeostatic compensation, one that increases the probability of glutamate release per action potential () and another that increases motoneuron (MN) activity. We investigated the molecular changes in MNs that underlie the increase in MN activity. RNA sequencing (RNA-seq) analysis on MNs whose glutamate release is weakened by knockdown of components of the MN transmitter release machinery reveals a reduction in expression of a group of genes that encode potassium channels and their positive modulators.
View Article and Find Full Text PDFThe distribution of alkaloids, with a focus on their chemodiversity, has been reported previously, but not at a genera-wide diversity level. This review provides a comprehensive survey of the occurrence of alkaloids across the genera of the family. This survey is taxonomically guided by the National Center for Biotechnology Information (NCBI) Taxonomy Browser, with targeted keyword searches conducted in the Chemical Abstracts Service (CAS) SciFinder-n and PubMed.
View Article and Find Full Text PDFSynaptic strength can vary greatly between synapses. Optical quantal analysis at Drosophila glutamatergic motor neuron synapses shows that short-term plasticity also varies greatly between synapses, even those made by an individual motor neuron. Strong and weak synapses are randomly distributed in the motor neuron nerve terminal, as are facilitating and depressing synapses.
View Article and Find Full Text PDFDNA mutations and methylation often contribute to disease development in a synergistic manner. While duplex sequencing is the most accurate method for detecting DNA mutations, it typically lacks the ability to simultaneously assess methylation or requires many reads. Here, we developed Methyl-CODEC to enable simultaneous methylation sequencing and duplex sequencing using single read pairs.
View Article and Find Full Text PDFAging is one of the most prominent risk factors for neurodegeneration, yet the molecular mechanisms underlying the deterioration of old neurons are mostly unknown. To efficiently study neurodegeneration in the context of aging, we transdifferentiated primary human fibroblasts from aged healthy donors directly into neurons, which retained their aging hallmarks, and we verified key findings in aged human and mouse brain tissue. Here we show that aged neurons are broadly depleted of RNA-binding proteins, especially spliceosome components.
View Article and Find Full Text PDFBasal synaptic strength can vary greatly between synapses formed by an individual neuron because of diverse probabilities of action potential (AP) evoked transmitter release ( ). Optical quantal analysis on large numbers of identified larval glutamatergic synapses shows that short-term plasticity (STP) also varies greatly between synapses made by an individual type I motor neuron (MN) onto a single body wall muscle. Synapses with high and low and different forms and level of STP have a random spatial distribution in the MN nerve terminal, and ones with very different properties can be located within 200 nm of one other.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
September 2024
Purpose: To characterize the heterogeneity and cell clusters of postnatal lens epithelial cells (LECs) and to investigate the downstream targets of connexin 50 (Cx50) in the regulation of lens homeostasis and lens growth. To determine differentially expressed genes (DEGs) in the connexin 50 knockout (Cx50KO) lens epithelial cells that shed light on novel mechanism underlying the cataract and small size of the Cx50KO lenses.
Methods: Single-cell RNA sequencing (scRNA-seq) of lens epithelial cells isolated from one-month-old Cx50KO and wild-type (WT) mice were performed.
Weakening of synaptic transmission at the Drosophila larval neuromuscular junction triggers two forms of homeostatic compensation, one that increases the probability of glutamate release per action potential (Pr) and another that increases motoneuron (MN) activity. We investigated the molecular changes in MNs that underlie the increase in MN activity. RNA-seq analysis on MNs whose glutamate release is weakened by knockdown of components of the MN transmitter release machinery reveals a reduction in expression of a group of genes that encode potassium channels and their positive modulators.
View Article and Find Full Text PDFAntimicrob Agents Chemother
October 2024
The emergence of plasmid-mediated resistance threatens the efficacy of polymyxins as the last line of defense against pan-drug-resistant infections. However, we have found that using Mueller-Hinton II (MHII), the standard minimum inhibitory concentration (MIC) medium, results in MIC data that are disconnected from treatment outcomes. We found that culturing putative colistin-resistant clinical isolates, as defined by MICs of >2 mg/L in standard MHII testing conditions, in bicarbonate-containing media reduced MICs to the susceptible range by preventing colistin resistance-conferring lipopolysaccharide modifications from occurring.
View Article and Find Full Text PDFBackground: Total joint replacement for osteoarthritis is one of the most successful surgical procedures in modern medicine. However, aseptic loosening continues to be a leading cause of revision arthroplasty. The diagnosis of aseptic loosening remains a challenge as patients are often asymptomatic until the late stages.
View Article and Find Full Text PDFInt J Biol Sci
November 2023
Periodontitis is a highly prevalent chronic inflammatory disease with an exaggerated host immune response, resulting in periodontal tissue destruction and potential tooth loss. The long non-coding RNA, LncR-ANRIL, located on human chromosome 9p21, is recognized as a genetic risk factor for various conditions, including atherosclerosis, periodontitis, diabetes, and cancer. LncR-APDC is an ortholog of ANRIL located on mouse genome chr4.
View Article and Find Full Text PDFBackground: Gastroenteropancreatic neuroendocrine carcinomas are rare neoplasms with no effective treatments and poor prognosis. Few reliable preclinical models exist for the study of gastroenteropancreatic neuroendocrine carcinomas, limiting investigation of novel treatments. We used tumor spheroids from our recently established gastroenteropancreatic neuroendocrine carcinoma patient-derived xenograft models to systematically screen for compounds with diverse structures to identify potential new categories of therapeutic agents that can target gastroenteropancreatic neuroendocrine carcinomas.
View Article and Find Full Text PDF3D Print Addit Manuf
October 2023
Background: MCL-1 is a prosurvival B-cell lymphoma 2 family protein that plays a critical role in tumor maintenance and survival and can act as a resistance factor to multiple anticancer therapies. Herein, we describe the generation and characterization of the highly potent and selective MCL-1 inhibitor ABBV-467 and present findings from a first-in-human trial that included patients with relapsed/refractory multiple myeloma (NCT04178902).
Methods: Binding of ABBV-467 to human MCL-1 was assessed in multiple cell lines.
Asthenozoospermia characterized by decreased sperm motility is a major cause of male infertility, but the majority of the etiology remains unknown. Here, we showed that the cilia and flagella associated protein 52 (Cfap52) gene was predominantly expressed in testis and its deletion in a Cfap52 knockout mouse model resulted in decreased sperm motility and male infertility. Cfap52 knockout also led to the disorganization of the midpiece-principal piece junction of the sperm tail but had no effect on the axoneme ultrastructure in spermatozoa.
View Article and Find Full Text PDFJ Med Genet
October 2023
BMC Musculoskelet Disord
April 2023
Background: Aseptic loosening is a leading cause of revision following total hip and knee arthroplasty which is caused by chronic inflammation around the prosthesis. Diabetes mellitus causes systemic inflammatory changes which could increase the risk of aseptic loosening. This study investigated the association between diabetes mellitus and aseptic loosening around hip and knee arthroplasty.
View Article and Find Full Text PDFAntimicrob Agents Chemother
March 2023
Acinetobacter baumannii is an extremely drug-resistant pathogen necessitating the development of new therapies. We seek to generate a cocktail of monoclonal antibodies (MAbs) that can target the full diversity of A. baumannii isolates.
View Article and Find Full Text PDFNeurooncol Adv
December 2022
Background: Serclutamab talirine (Ser-T, formerly ABBV-321) is an antibody-drug conjugate consisting of an antibody (AM-1-ABT-806) directed against activated epidermal growth factor receptor (EGFR) and a pyrrolobenzodiazepine dimer. We investigated Ser-T monotherapy in a phase I, first-in-human, dose-escalation, and dose-expansion study in patients with advanced solid tumors associated with EGFR overexpression.
Methods: Eligible patients (≥18 years) had advanced, histologically confirmed solid tumors associated with EGFR overexpression (centralized testing).
Background: We previously reported developing 2 anticapsular monoclonal antibodies (mAbs) as a novel therapy for Acinetobacter baumannii infections. We sought to determine whether a bispecific mAb (bsAb) could improve avidity and efficacy while maximizing strain coverage in one molecule.
Methods: Humanized mAb 65 was cloned into a single-chain variable fragment and attached to humanized mAb C8, combining their paratopes into a single bsAb (C73).
Although 3-dimensional (3D) printing is becoming more widely adopted for clinical applications, it is yet to be accepted as part of standard practice. One of the key applications of this technology is orthopaedic surgical planning for urgent trauma cases. Anatomically accurate replicas of patients' fracture models can be produced to guide intervention.
View Article and Find Full Text PDFNovel approaches to combating antibiotic resistance are needed given the ever-continuing rise of antibiotic resistance and the scarce discovery of new antibiotics. Little is known about the colonization dynamics and the role of intrinsic plant-food characteristics in this process. We sought to determine whether plant fiber could alter colonization dynamics by antibiotic-resistant bacteria in the gut.
View Article and Find Full Text PDFDevice-associated infections remain a clinical challenge. The common strategies to prevent bacterial infection are either toxic to healthy mammalian cells and tissue or involve high doses of antibiotics that can prompt long-term negative consequences. An antibiotic-free coating strategy to suppress bacterial growth is presented herein, which concurrently promotes bone cell growth and moderates the dissolution kinetics of resorbable magnesium (Mg) biomaterials.
View Article and Find Full Text PDF