Publications by authors named "Krisha Aghi"

Synaptic strength can vary greatly between synapses. Optical quantal analysis at Drosophila glutamatergic motor neuron synapses shows that short-term plasticity also varies greatly between synapses, even those made by an individual motor neuron. Strong and weak synapses are randomly distributed in the motor neuron nerve terminal, as are facilitating and depressing synapses.

View Article and Find Full Text PDF

Basal synaptic strength can vary greatly between synapses formed by an individual neuron because of diverse probabilities of action potential (AP) evoked transmitter release ( ). Optical quantal analysis on large numbers of identified larval glutamatergic synapses shows that short-term plasticity (STP) also varies greatly between synapses made by an individual type I motor neuron (MN) onto a single body wall muscle. Synapses with high and low and different forms and level of STP have a random spatial distribution in the MN nerve terminal, and ones with very different properties can be located within 200 nm of one other.

View Article and Find Full Text PDF

To build a just, equitable, and diverse academy, scientists and institutions must address systemic barriers that sex and gender minorities face. This Commentary summarizes (1) critical context informing the contemporary oppression of transgender people, (2) how this shapes extant research on sex and gender, and (3) actions to build an inclusive and rigorous academy for all.

View Article and Find Full Text PDF

We have recently proposed experimental design guidelines and areas of study for preclinical rodent models of gender-affirming hormone therapy in neuroscience. These guidelines also apply to any field subject to the influences of gonadal steroid hormones, including metabolism and growth, cancer, and physiology. This perspective briefly describes our suggestions for these fields.

View Article and Find Full Text PDF

Sex is ubiquitous and variable throughout the animal kingdom. Historically, scientists have used reductionist methodologies that rely on a priori sex categorizations, in which two discrete sexes are inextricably linked with gamete type. However, this binarized operationalization does not adequately reflect the diversity of sex observed in nature.

View Article and Find Full Text PDF

The scientific community widely recognizes that "sex" is a complex category composed of multiple physiologies. Yet in practice, basic scientific research often treats "sex" as a single, internally consistent, and often binary variable. This practice occludes important physiological factors and processes, and thus limits the scientific value of our findings.

View Article and Find Full Text PDF

Research regarding the mental health of the Lesbian, Gay, Bisexual, Transgender, Queer, Intersex, Asexual, 2 Spirit (LGBTQIA2S+) community has been historically biased by individual and structural homophobia, biphobia, and transphobia, resulting in research that does not represent the best quality science. Furthermore, much of this research does not serve the best interests or priorities of LGBTQIA2S + communities, despite significant mental health disparities and great need for quality mental health research and treatments in these populations. Here, we will highlight how bias has resulted in missed opportunities for advancing understanding of mental health within LGBTQIA2S + communities.

View Article and Find Full Text PDF

Most studies attempting to address the health care needs of the millions of transgender, nonbinary, and/or gender-diverse (TNG) individuals rely on human subjects, overlooking the benefits of translational research in animal models. Researchers have identified many ways in which gonadal steroid hormones regulate neuronal gene expression, connectivity, activity, and function across the brain to control behavior. However, these discoveries primarily benefit cisgender populations.

View Article and Find Full Text PDF
Article Synopsis
  • Neural circuit function is influenced by how neurons connect and the strength of these connections, which involves postsynaptic sensitivity and presynaptic release probability (P).
  • QuaSOR, a super-resolution imaging method, was developed to measure P at hundreds of synapses simultaneously, focusing on the Drosophila larval neuromuscular junction (NMJ).
  • The study reveals that P varies among synapses linked to the same axon and identifies Complexin as a key protein that modulates both spontaneous and evoked neurotransmitter release, affecting transmission quality through the balance of different presynaptic proteins.
View Article and Find Full Text PDF

Inherited and age-related retinal degenerative diseases cause progressive loss of rod and cone photoreceptors, leading to blindness, but spare downstream retinal neurons, which can be targeted for optogenetic therapy. However, optogenetic approaches have been limited by either low light sensitivity or slow kinetics, and lack adaptation to changes in ambient light, and not been shown to restore object vision. We find that the vertebrate medium wavelength cone opsin (MW-opsin) overcomes these limitations and supports vision in dim light.

View Article and Find Full Text PDF