Despite significant advancesin osteoimmunology, the mechanistic underpinnings of immune-skeletal crosstalk remain insufficiently characterized, particularly at the molecular and submolecular scales. The present article introduces quantum osteoimmunology as a novel field of research exploring how quantum mechanical phenomena, such as coherence, tunneling, entanglement, and wavefunction superposition, may influence osteoimmune signaling dynamics. It argues that the current deterministic, temporally linear models of immune activation may overlook the probabilistic and non-linear nature of molecular events governed by quantum principles.
View Article and Find Full Text PDF