Land cover conversions (LCC) have substantially reshaped terrestrial carbon dynamics, yet their net impact on carbon sequestration remains uncertain. Here, we use the remote sensing-driven BEPS model and high-resolution HILDA+ data to quantify LCC-induced changes in net ecosystem productivity (NEP) from 1981 to 2019. Despite global forest loss and cropland/urban expansion, LCC led to a net carbon gain of 229 Tg C.
View Article and Find Full Text PDFMany vegetation phenological models predominantly rely on temperature, overlooking the critical roles of water availability and soil characteristics. This limitation significantly impacts the accuracy of phenological projections, particularly in water-limited ecosystems. We proposed a new approach incorporating soil enthalpy-a comprehensive metric integrating soil moisture, temperature, and texture-to improve phenological modeling.
View Article and Find Full Text PDFPlant Cell Environ
January 2025
Global warming is exhibiting a seasonal trend, while different seasons have different warming variations. However, the impact of seasonal warming on plants remains unclear. This study employed Open Top Chambers (OTCs) to simulate future seasonal warming scenarios in alpine meadow.
View Article and Find Full Text PDFAs a sensitive indicator of climate change and a key variable in ecosystem surface-atmosphere interaction, vegetation phenology, and the growing season length, as well as climatic factors (i.e., temperature, precipitation, and sunshine duration) are widely recognized as key factors influencing vegetation productivity.
View Article and Find Full Text PDFThe Tibetan Plateau, housing 20% of China's wetlands, plays a vital role in the regional carbon cycle. Examining the phenological dynamics of wetland vegetation in response to climate change is crucial for understanding its impact on the ecosystem. Despite this importance, the specific effects of climate change on wetland vegetation phenology in this region remain uncertain.
View Article and Find Full Text PDFGlob Chang Biol
January 2024
Climate change has induced substantial shifts in vegetation boundaries such as alpine treelines and shrublines, with widespread ecological and climatic influences. However, spatial and temporal changes in the upper elevational limit of alpine grasslands ("alpine grasslines") are still poorly understood due to lack of field observations and remote sensing estimates. In this study, taking the Tibetan Plateau as an example, we propose a novel method for automatically identifying alpine grasslines from multi-source remote sensing data and determining their positions at 30-m spatial resolution.
View Article and Find Full Text PDFClimate warming has induced widespread isotherm shifts toward higher elevations on the Tibetan Plateau, but elevational shifts of vegetation greenness (indicated by Normalized Difference Vegetation Index, NDVI) do not necessarily keep pace with the isotherm shifts. Thus, there should be spatial variations in the difference between the velocities of vertical movement of greenness isolines (V) and isotherms (V) across the Tibetan Plateau grasslands. Using satellite-observed NDVI and gridded climate data during 2000-2017, we found uphill shifts of the isotherms in 81.
View Article and Find Full Text PDFSci Total Environ
September 2023
Many studies have reported that daytime warming advances the end of the vegetation growing season (EOS) in arid and semi-arid ecosystems in the northern middle latitudes. This finding, however, seems to contradict the fact that low temperature constrains alpine vegetation activity. Using EOS from 1982 to 2015 retrieved from satellite observations, we show that daytime warming could facilitate a delay in EOS on the Tibetan Plateau, the world's largest and highest alpine region, with a dry and cold climate.
View Article and Find Full Text PDFFront Plant Sci
March 2022
The phenology of alpine grassland on the Qinghai-Tibet Plateau (QTP) is critical to regional climate change through climate-vegetation feedback. Although many studies have examined QTP vegetation dynamics and their climate sensitivities, the interspecific difference in the phenology response to climate change between alpine species is poorly understood. Here, we used a 30-year (1989-2018) record of phenological observation for five typical alpine herbs (, , , , and ) and associated climatic records at Henan Station in the eastern QTP to examine the species-level difference in spring and autumn phenology and then quantify their climate sensitivities.
View Article and Find Full Text PDFClimatic warming alters the onset, duration and cessation of the vegetative season. While previous studies have shown a tight link between thermal conditions and leaf phenology, less is known about the impacts of phenological changes on tree growth. Here, we assessed the relationships between the start of the thermal growing season and tree growth across the extratropical Northern Hemisphere using 3,451 tree-ring chronologies and daily climatic data for 1948-2014.
View Article and Find Full Text PDFSci Bull (Beijing)
September 2021
Sci Total Environ
November 2021
For many migrant bird species around the world, climate change has been shown to induce changes in the timings of arrival and the onset of spring food availability at breeding sites. However, whether such changes enlarged asynchrony between the timings of spring arrival of long-distance migratory birds and onset of vegetation greenness increase remain controversial. We used a 29-year phenological dataset to investigate the temporal changes in spring first-sighting date (FSD) of a long-distance migratory bird (barn swallow, Hirundo rustica), from observations at 160 local breeding sites across northern China, and the vegetation green-up onset date (VGD), determined from satellite observations of vegetation greenness.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
April 2021
Within a short period, rapid urbanization has reshaped China's eco-environment, especially at the beginning of the new century. Many studies have focused on the changes in certain physical indicators of eco-environments; however, these indicators cannot directly explain or only slightly consider the eco-environmental benefits of urban residents. Therefore, we analysed location-based population-weighted eco-environmental changes with indicators of the vegetation index and fine particulate matter (PM) concentration at each pixel in China's prefectures and combined the changes with urban expansion to provide an expanded understanding of the transformation of China's urbanization and its eco-environmental dynamics.
View Article and Find Full Text PDFGlob Chang Biol
June 2019
Plant phenology, the annually recurring sequence of plant developmental stages, is important for plant functioning and ecosystem services and their biophysical and biogeochemical feedbacks to the climate system. Plant phenology depends on temperature, and the current rapid climate change has revived interest in understanding and modeling the responses of plant phenology to the warming trend and the consequences thereof for ecosystems. Here, we review recent progresses in plant phenology and its interactions with climate change.
View Article and Find Full Text PDFClimate warming on the Tibetan Plateau tends to induce an uphill shift of temperature isolines. Observations and process-based models have both shown that climate warming has resulted in an increase in vegetation greenness on the Tibetan Plateau in recent decades. However, it is unclear whether the uphill shift of temperature isolines has caused greenness isolines to shift upward and whether the two shifts match each other.
View Article and Find Full Text PDFThe uncertainties of China's gross primary productivity (GPP) estimates by global data-oriented products and ecosystem models justify a development of high-resolution data-oriented GPP dataset over China. We applied a machine learning algorithm developing a new GPP dataset for China with 0.1° spatial resolution and monthly temporal frequency based on eddy flux measurements from 40 sites in China and surrounding countries, most of which have not been explored in previous global GPP datasets.
View Article and Find Full Text PDFLarge-scale ecological restoration programs are considered as one of the key strategies to enhance ecosystem services. The Headstream region of Yangtze River (HYZR), which is claimed to be China's Water Tower but witnessed the rapid grassland deterioration during 1970s-2000, has seen a series of grassland restoration programs since 2000. But few studies have thoroughly estimated the hydrological effect of this recent grassland restoration.
View Article and Find Full Text PDFInt J Biometeorol
August 2017
Vegetation activity on the Tibetan Plateau grassland has been substantially enhanced as a result of climate change, as revealed by satellite observations of vegetation greenness (i.e., the normalized difference vegetation index, NDVI).
View Article and Find Full Text PDFGlob Chang Biol
September 2016
Understanding vegetation responses to climate change on the Tibetan Plateau (TP) helps in elucidating the land-atmosphere energy exchange, which affects air mass movement over and around the TP. Although the TP is one of the world's most sensitive regions in terms of climatic warming, little is known about how the vegetation responds. Here, we focus on how spring phenology and summertime greenness respond to the asymmetric warming, that is, stronger warming during nighttime than during daytime.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
July 2015
In the Arctic, climate warming enhances vegetation activity by extending the length of the growing season and intensifying maximum rates of productivity. In turn, increased vegetation productivity reduces albedo, which causes a positive feedback on temperature. Over the Tibetan Plateau (TP), regional vegetation greening has also been observed in response to recent warming.
View Article and Find Full Text PDFGlob Chang Biol
October 2015
The ongoing changes in vegetation spring phenology in temperate/cold regions are widely attributed to temperature. However, in arid/semiarid ecosystems, the correlation between spring temperature and phenology is much less clear. We test the hypothesis that precipitation plays an important role in the temperature dependency of phenology in arid/semiarid regions.
View Article and Find Full Text PDFRecent warming significantly advanced leaf onset in the northern hemisphere. This signal cannot be accurately reproduced by current models parameterized by daily mean temperature (T(mean)). Here using in situ observations of leaf unfolding dates (LUDs) in Europe and the United States, we show that the interannual anomalies of LUD during 1982-2011 are triggered by daytime (Tmax) more than by nighttime temperature (T(min)).
View Article and Find Full Text PDFVegetation phenology is a sensitive indicator of the dynamic response of terrestrial ecosystems to climate change. In this study, the spatiotemporal pattern of vegetation dormancy onset date (DOD) and its climate controls over temperate China were examined by analysing the satellite-derived normalized difference vegetation index and concurrent climate data from 1982 to 2010. Results show that preseason (May through October) air temperature is the primary climatic control of the DOD spatial pattern across temperate China, whereas preseason cumulative precipitation is dominantly associated with the DOD spatial pattern in relatively cold regions.
View Article and Find Full Text PDFThe observed decline of spring dust storms in Northeast Asia since the 1950s has been attributed to surface wind stilling. However, spring vegetation growth could also restrain dust storms through accumulating aboveground biomass and increasing surface roughness. To investigate the impacts of vegetation spring growth on dust storms, we examine the relationships between recorded spring dust storm outbreaks and satellite-derived vegetation green-up date in Inner Mongolia, Northern China from 1982 to 2008.
View Article and Find Full Text PDF