98%
921
2 minutes
20
The Tibetan Plateau, housing 20% of China's wetlands, plays a vital role in the regional carbon cycle. Examining the phenological dynamics of wetland vegetation in response to climate change is crucial for understanding its impact on the ecosystem. Despite this importance, the specific effects of climate change on wetland vegetation phenology in this region remain uncertain. In this study, we investigated the influence of climate change on the end of the growing season (EOS) of marsh wetland vegetation across the Tibetan Plateau, utilizing satellite-derived Normalized Difference Vegetation Index (NDVI) data and observational climate data. We observed that the regionally averaged EOS of marsh vegetation across the Tibetan Plateau was significantly (p < .05) delayed by 4.10 days/decade from 2001 to 2020. Warming preseason temperatures were found to be the primary driver behind the delay in the EOS of marsh vegetation, whereas preseason cumulative precipitation showed no significant impact. Interestingly, the responses of EOS to climate change varied spatially across the plateau, indicating a regulatory role for hydrological conditions in marsh phenology. In the humid and cold central regions, preseason daytime warming significantly delayed the EOS. However, areas with lower soil moisture exhibited a weaker or reversed delay effect, suggesting complex interplays between temperature, soil moisture, and EOS. Notably, in the arid southwestern regions of the plateau, increased preseason rainfall directly delayed the EOS, while higher daytime temperatures advanced it. Our results emphasize the critical role of hydrological conditions, specifically soil moisture, in shaping marsh EOS responses in different regions. Our findings underscore the need to incorporate hydrological factors into terrestrial ecosystem models, particularly in cold and dry regions, for accurate predictions of marsh vegetation phenological responses to climate change. This understanding is vital for informed conservation and management strategies in the face of current and future climate challenges.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/gcb.17097 | DOI Listing |
J Relig Health
September 2025
Center for Climate Action and Social Transformations (4CAST) Institute of Psychology, SWPS University, Warsaw, Poland.
The present study examined responses to COVID-19 at the beginning of the pandemic, April 2020, among a representative sample of 880 Poles. Participants described their religious beliefs, their emotional reactions to the pandemic, the changes they had made in their behavior since the onset of the pandemic, and their political orientation (left-right). Roman Catholics felt more threatened by the pandemic than non-believers, and Catholics reacted more strongly to the pandemic than non-believers in terms of feeling scared, paralyzed by fear, panicked, fearful, sad, woebegone, and lost, whereas there were no such differences on other emotional reactions.
View Article and Find Full Text PDFPlant Commun
September 2025
School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany. Electronic address:
The coordination of floral developmental stages with the environment is important for reproductive success and the optimization of crop yields. The timing of different developmental stages contributes to final yield potential with optimal adaptation enabling development to proceed without being impacted by seasonal weather events, including frosts or end of season drought. Here we characterise the role of FLOWERING LOCUS T 3 (FT3) in hexaploid bread wheat (Triticum aestivum) during the early stages of floral development.
View Article and Find Full Text PDFAdv Nutr
September 2025
Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, 715 Sumter Street, CLS 513C, SC 29208, USA.
Human activities contribute to large shifts in the global climate, with far-reaching impacts on ecosystems, societies, and human health. Modern food systems-designed to produce convenience foods that tend to have high inflammatory potential-exacerbate environmental degradation and shape the interwoven challenges of climate, nutrition, and health. Over the past three decades, extreme weather has worsened and poor diets have led to more inflammation-related health problems-two parallel trends that are exposing system-wide weaknesses and harming global health.
View Article and Find Full Text PDFMar Environ Res
August 2025
Marine Macroecology and Biogeography Lab, Universidade Federal de Santa Catarina, Brazil.
Transition zones exhibit a unique combination of abiotic characteristics derived from the merging of two distinct areas, hosting communities with different thermal tolerance and distribution ranges. Given these characteristics, these zones are key to unmasking the effects of climate change on biodiversity since rapid changes in the sea temperature can favor some populations more than others. This study aimed to investigate the community structure of reef fish in seven islands of the southwestern Atlantic in a transition zone.
View Article and Find Full Text PDFSci Total Environ
September 2025
Environmental Change Research Unit, Faculty of Biological and Environmental Sciences, University of Helsinki, P.O. Box 65, FI-00014, Finland.
Small lakes are common across the Boreal-Arctic zone. Due to shallowness and high shoreline-surface area ratios, they are abundant in aquatic macrophytes. Vegetated littoral zones have been suggested to count as wetlands when quantifying carbon sinks and sources, but the actual magnitude of aquatic vegetation is seldom quantified.
View Article and Find Full Text PDF