Publications by authors named "Mengsu Yang"

Most patients with hepatocellular carcinoma (HCC) are often diagnosed at advanced stages, limiting the effectiveness of curative treatments. In a multicenter study involving 522 patients with HCC and liver cirrhosis, predominantly with hepatitis B virus infection, we evaluated plasma microRNAs (miRNAs) as potential liquid biopsy biomarkers for early HCC screening. Significant upregulation of 18 miRNAs in HCC patients was confirmed across three stages.

View Article and Find Full Text PDF

3D microarchitected hydrogels have recently been exploited to establish microphysiological systems for preclinical studies. However, promising hydrogels, unlike anhydrous elastomers, which have been widely adopted for device microfabrication, are still scarce for biodevice engineering due to their limitations in mechanical properties and manufacturability. Here, we leverage temperature-controlled physical cross-linking of a polymer network to generate highly strong, elastic, and transparent hydrogels, which can be further readily microfabricated into elaborate constructs for diverse device designs.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) play crucial roles in intercellular communication and hold great promise as biomarkers for noninvasive disease diagnosis. Intensive research efforts have been devoted to discovering the EV subpopulations responsible for specific functions or with enhanced effectiveness as disease markers, through extensive EV purification and content analysis. However, their high heterogeneity in size and cargo composition poses significant challenges for reaching such goals.

View Article and Find Full Text PDF

Gene fusions are common cancer drivers and therapeutic targets, but clinical-grade open-source bioinformatic tools are lacking. Here, we introduce a fusion detection method named SplitFusion, which is fast by leveraging Burrows-Wheeler Aligner-maximal exact match (BWA-MEM) split alignments, can detect cryptic splice-site fusions (e.g.

View Article and Find Full Text PDF

Background: The triple-negative subtype of breast cancer is particularly challenging to treat due to its aggressiveness with a high risk of brain metastasis, and the lack of effective targeted therapies. Tubulin beta 2B class IIb (TUBB2B), a β-tubulin isoform regulating axon guidance during embryonic development, was found to be overexpressed in various types of cancers including triple-negative breast cancer (TNBC). However, its functional roles in breast cancer or metastasis remain unclear.

View Article and Find Full Text PDF

Immune effector cells, including cytotoxic T lymphocytes (CTLs) play essential roles in eliminating cancer cells. However, their functionality is often compromised, even when they infiltrate the tumor microenvironment (TME) or are transferred to cancer patients adoptively. In this study, we focused on galectin 9 (G9), an inhibitory ligand that we observed to be predominately positioned on the plasma membrane and readily interacts with CD8 + CTL in the TME of nasopharyngeal carcinoma (NPC).

View Article and Find Full Text PDF

Circulating tumor cells (CTCs) play a pivotal role in cancer metastasis and hold considerable potential for clinical diagnosis, therapeutic monitoring, and prognostic evaluation. Nevertheless, the limited quantity of CTCs in liquid biopsy samples poses challenges for comprehensive downstream analysis. In vitro culture of CTCs can effectively address the issue of insufficient CTC numbers.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with an unmet clinical need, but its epigenetic regulation remains largely undefined. By performing multiomic profiling, we recently revealed distinct super-enhancer (SE) patterns in different subtypes of breast cancer and identified a number of TNBC-specific SEs that drive oncogene expression. One of these SEs, TCOF1 SE, was discovered to play an important oncogenic role in TNBC.

View Article and Find Full Text PDF
Article Synopsis
  • - Hepatocellular carcinoma (HCC) is a highly lethal form of cancer, with research indicating that metabolic changes play a key role in its development.
  • - Carbamoyl phosphate synthase 1 (CPS1), important for urea cycle regulation, is found to be low in HCC tissue and linked to worse disease outcomes.
  • - CPS1 has a dual role: it inhibits cancer cell invasion while promoting cell growth through the regulation of key intracellular pathways, suggesting its potential as a target in HCC treatment.
View Article and Find Full Text PDF

DNA modifications in bacteria present diverse types and distributions, playing crucial functional roles. Current methods for detecting bacterial DNA modifications via nanopore sequencing typically involve comparing raw current signals to a methylation-free control. In this study, we found that bacterial DNA modification induces errors in nanopore reads.

View Article and Find Full Text PDF

The precision of previous cancer research based on tumor spheroids, especially the microgel-encapsulating tumor spheroids, was limited by the high heterogeneity in the tumor spheroid size and shape. Here, we reported a user-friendly solenoid valve-based sorter to reduce this heterogeneity. The artificial intelligence algorithm was employed to detect and segmentate the tumor spheroids in real-time for the size and shape calculation.

View Article and Find Full Text PDF
Article Synopsis
  • Two sarbecoviruses, SARS-CoV and SARS-CoV-2, pose significant public health challenges due to their interaction with the ACE2 receptor, with some showing deletions in their receptor-binding domain (RBD).
  • This study focused on two related sarbecoviruses, BtKY72 and BM48-31, finding that BtKY72 had a broader range for ACE2 binding, which is critical for understanding virus-host interactions.
  • By analyzing the structure of BtKY72 bound to bat ACE2 and identifying key residues, the study also revealed how mutations in the RBD could enable binding to human ACE2, paving the way for potential treatments against emerging sarbecoviruses.
View Article and Find Full Text PDF

This study reports a fluorescent nanoprobe operated in fluorescence turn-on mode for simultaneously sensing and imaging intracellular GSH and ATP. By using maleimide-derivatives as the ligand, the bimetallic nanoscale metal-organic framework (NMOF) Cu-Mi-UiO-66 has been synthesized for the first time using a straightforward one-step solvothermal approach, serving as a GSH recognition moiety. Subsequently, a Cy5-labeled ATP aptamer was assembled onto Cu-Mi-UiO-66 strong coordination between phosphate and zirconium, π-π stacking and electrostatic adsorption to develop the dual-responsive fluorescence nanoprobe Cu-Mi-UiO-66/aptamer.

View Article and Find Full Text PDF

In recent decades, research on Extracellular Vesicles (EVs) has gained prominence in the life sciences due to their critical roles in both health and disease states, offering promising applications in disease diagnosis, drug delivery, and therapy. However, their inherent heterogeneity and complex origins pose significant challenges to their preparation, analysis, and subsequent clinical application. This review is structured to provide an overview of the biogenesis, composition, and various sources of EVs, thereby laying the groundwork for a detailed discussion of contemporary techniques for their preparation and analysis.

View Article and Find Full Text PDF

Circulating tumor cells (CTCs) play a critical role as initiators in tumor metastasis, which unlocks an irreversible process of cancer progression. Regarding the fluid environment of intravascular CTCs, a comprehensive understanding of the impact of hemodynamic shear stress on CTCs is of profound significance but remains vague. Here, we report a microfluidic circulatory system that can emulate the CTC microenvironment to research the responses of typical liver cancer cells to varying levels of fluid shear stress (FSS).

View Article and Find Full Text PDF
Article Synopsis
  • * A new digital microfluidic system has been created to efficiently screen multiple drugs using these tumor cells, achieving high throughput with a compact design.
  • * Validations in mice and patient liver cancer samples indicate that the system can effectively identify suitable drugs for individual tumors, supporting its potential to improve precision medicine in cancer treatment.
View Article and Find Full Text PDF

Extracellular vesicles (EVs), crucial in facilitating the transport of diverse molecular cargoes for intercellular communication, have shown great potential in diagnostics, therapeutics, and drug delivery. The challenge of developing effective preparation methods for EVs is heightened by their intrinsic heterogeneity and complexity. Here, a novel strategy for high EV enrichment is developed by utilizing EV-affinitive-modified cellulose nanofibrils.

View Article and Find Full Text PDF

Background: Sperm selection, a key step in assisted reproductive technology (ART), has long been restrained at the preliminary physical level (morphology or motility); however, subsequent fertilization and embryogenesis are complicated biochemical processes. Such an enormous "gap" poses tough problems for couples dealing with infertility, especially patients with severe/total asthenozoospermia .

Methods: We developed a biochemical-level, automatic-screening/separation, smart droplet-TO-hydrogel chip (BLASTO-chip) for sperm selection.

View Article and Find Full Text PDF

Digital DNA amplification is a powerful method for detecting and quantifying rare nucleic acids. In this study, we developed a multi-functional droplet-based platform that integrates the traditional digital DNA amplification workflow into a one-step device. This platform enables efficient droplet generation, transition, and signal detection within a 5-min timeframe, distributing the sample into a uniform array of 4 × 10 droplets (variation <2%) within a chamber.

View Article and Find Full Text PDF

Magnetic particle imaging (MPI) is an emerging non-invasive tomographic technique based on the response of magnetic nanoparticles (MNPs) to oscillating drive fields at the center of a static magnetic gradient. In contrast to magnetic resonance imaging (MRI), which is driven by uniform magnetic fields and projects the anatomic information of the subjects, MPI directly tracks and quantifies MNPs in vivo without background signals. Moreover, it does not require radioactive tracers and has no limitations on imaging depth.

View Article and Find Full Text PDF

Wnt signaling plays a central role in tissue development and homeostasis, and its deregulation is implicated in many human diseases, including cancer. As an essential posttranslational modification, protein phosphorylation is critical in Wnt signaling and has been a focus of investigation using systematic approaches, including proteomics. Typically, studies were conducted by applying purified Wnt ligands to cells in a "starvation" condition to minimize the background noise.

View Article and Find Full Text PDF

Zebrafish is a widely used model organism for investigating human diseases, including hematopoietic disorders. However, a comprehensive methylation baseline for zebrafish primary hematopoietic organ, the kidney marrow (KM), is still lacking. We employed Oxford Nanopore Technologies (ONT) sequencing to profile DNA methylation in zebrafish KM by generating four KM datasets, with two groups based on the presence or absence of red blood cells.

View Article and Find Full Text PDF

Rapid and quantitative biochemical analysis at points-of-need is imperative for food safety inspection. This work reports on: 1) a stand-alone smartphone-based "two-in-one" spectrophotometer (the SAFS) installed with a self-developed application (the SAFS-App) which can precisely collect both absorption spectra and fluorescence spectra in a reproducible manner within 5 s; and 2) a straightforward protocol for xanthine detection using fluorescent carbon nanodots and silver nanoparticles. The assay performed with the SAFS demonstrates high specificity towards xanthine, and a linear range of 1-60 μM with LODs of 0.

View Article and Find Full Text PDF

Conventional light-driven cancer therapeutics require oxygen and visible light to indirectly damage biomolecules, limiting their efficacy in deep, hypoxic tumours. Here we report the use of near-infrared-activated small-molecule Pt(IV) photooxidants to directly oxidize intracellular biomolecules in an oxygen-independent manner, achieving controllable and effective elimination of cancer stem cells. These Pt(IV) complexes accumulate in the endoplasmic reticulum and show low toxicity in the dark.

View Article and Find Full Text PDF

Third-generation sequencing can be used in human cancer genomics and epigenomic research. Oxford Nanopore Technologies (ONT) recently released R10.4 flow cell, which claimed an improved read accuracy compared to R9.

View Article and Find Full Text PDF