Publications by authors named "Linli He"

GABA (g-aminobutyric acid) transporter 3 (GAT3) is primarily found in glial cells and is essential for regulating GABA homeostasis in the central nervous system by mediating GABA uptake. Consequently, GAT3 has emerged as a significant therapeutic target for the treatment of epilepsy. In this study, we present the cryoelectron microscopy (cryo-EM) structures of GAT3 bound to its substrate GABA, the selective inhibitor SNAP-5114, and in the substrate-free state.

View Article and Find Full Text PDF

Introduction: The continuous outbreak of global epidemics has highlighted the impact of disease threats on consumer behavior. While prior research has examined the influence of disease threats on consumer decisions, few studies have explored their specific effect on the purchase intention of ultra-processed foods among high-pressure workers. This study examines how disease threats affect the purchase intention of ultra-processed foods among this group.

View Article and Find Full Text PDF

The nature of two-dimensional melting remains a matter of debate. Based on Langevin dynamics simulation, we present a surprising observation that the melting pathway of hard circular-particles/disks is relevant to the dynamical properties of particles. Using hard circular-particles/disks, where particle friction is proportional to particle size, results show the melting pathway of small size particles obeys two-step scenario, consistent with previous reports on melting behavior of hard disks.

View Article and Find Full Text PDF

Background: Prior research has found that perceived risk in stroke patients motivates health behaviors in visitors. However, the role that perceived risk of recurrence in stroke patients plays in reinforcing health management awareness during the motivation phase is unclear.

Objective: This study explores this issue by examining the effects of risk fear and health literacy on health management awareness due to perceived risk of recurrence in stroke patients.

View Article and Find Full Text PDF

This paper describes a ferric nitrene/photoredox dual-catalyzed anti-Markovnikov ring-opening of epoxides under neutral conditions for providing α-substituted acetophenones. A DFT-based calculation supported the reaction regioselectivity. The catalytic system could also be applied to the formation of C-O and C-N bonds nucleophilic functionalization of benzylic C-H bonds.

View Article and Find Full Text PDF

In this work, the annulation of acyl nitrene with alkynes is reported under photoredox/iron dual-catalysis for the synthesis of a series of isoquninalin-2-ones. The reaction is featured with a high reaction regioselectivity and good reaction generality. In particular, the resulting isoquinalin-2-ones could be structurally elaborated into several biologically interesting scaffolds.

View Article and Find Full Text PDF

We discuss and compare the statistical properties of two stochastic three-sphere micromachines, i.e., odd micromachine and thermal micromachine.

View Article and Find Full Text PDF
Article Synopsis
  • Tetraphenylethene (TPE) is a compound with significant applications in creating fluorescent nanomaterials and biosensors, but challenges remain in making TPE aggregates that exhibit strong fluorescence and electrochemiluminescence.* -
  • This study presents a highly sensitive bacterial ECL biosensor developed from TPE-based covalent organic polymer nanoparticles, which were synthesized using a straightforward Menschutkin reaction with specific cross-linking agents.* -
  • The resulting biosensor demonstrated exceptional sensitivity (0.19 CFU mL detection limit), a wide linear detection range, and impressive ECL efficiency, significantly enhancing its potential for large-scale detection of harmful bacteria.*
View Article and Find Full Text PDF

The dynamical and conformational properties of the comb polymer with various rigidities of the backbone and arms in steady shear flow are studied by using a hybrid mesoscale simulation approach that combines multiparticle collision dynamics with standard molecular dynamics. First, during the process of the comb polymer undergoing periodic tumbling motion, we find that the rigidity of the arms always promotes the tumbling motion of the comb polymer, but the rigidity of the backbone shifts from hindering to promoting it with increasing the rigidity of the arms. In addition, the comb polymer transitions from vorticity tumbling to gradient tumbling with the increase in shear rate.

View Article and Find Full Text PDF

Covalent polymer networks find wide utility in diverse engineering applications owing to their desirable stiffness and resilience. However, the rigid covalent chemical structure between crosslinking points imposes limitations on enhancing their toughness. Although the incorporation of sacrificial chemical bonds has shown promise in improving toughness through energy dissipation, composite networks struggle to maintain both rapid recovery and stiffness.

View Article and Find Full Text PDF

We employed all-atom molecular dynamics simulations to explore the mechanical response of bending, twisting, and overwinding for double-stranded DNA (dsDNA). We analyzed the bending and twisting deformations, as well as their stiffnesses, using the tilt, roll, and twist modes under stretching force. Findings indicate that the roll and twist angles vary linearly with the stretching force but show opposite trends.

View Article and Find Full Text PDF

Pulmonary embolism (PE) leads to obstruction of pulmonary circulation, resulting in increased pulmonary vascular resistance, elevated pulmonary arterial pressure, and increased right heart load. In severe cases, it can lead to cardiac decompensation and life-threatening conditions. However, clinical studies on PE in children are limited, with many diagnostic and treatment guidelines derived from adult populations.

View Article and Find Full Text PDF

As an effective ECL emitter, tetraphenylethene (TPE)-based molecules have recently been reported with aggregation-induced electrochemiluminescence (AIECL) property, while it is still a big challenge to control its aggregation states and obtain uniform aggregates with intense ECL emission. In this study, we develop three TPE derivatives carrying a pyridinium group, an alkyl chain, and a quaternary ammonium group via the Menschutkin reaction. The resulting molecules exhibit significantly red-shifted FL and enhanced ECL emissions due to the tunable reduction of the energy gap between the highest occupied molecular orbitals (HOMOs) and the lowest unoccupied molecular orbitals (LUMOs).

View Article and Find Full Text PDF

The temperature-dependent bend and twist elasticities of dsDNA, as well as their couplings, were explored through all-atom molecular dynamics simulations. Three rotational parameters, tilt, roll, and twist, were employed to assess the bend and twist elasticities through their stiffness matrix. Our analysis indicates that the bend and twist stiffnesses decrease as the temperature rises, primarily owing to entropic influences stemming from thermodynamic fluctuations.

View Article and Find Full Text PDF

We used all-atom molecular dynamics simulation to investigate the elastic properties of double-stranded DNA (dsDNA). We focused on the influences of temperature on the stretch, bend, and twist elasticities, as well as the twist-stretch coupling, of the dsDNA over a wide range of temperature. The results showed that the bending and twist persistence lengths, together with the stretch and twist moduli, decrease linearly with temperature.

View Article and Find Full Text PDF

We investigate the phase behavior of the asymmetric lipid membranes under shear flows, using the dissipative particle dynamics simulation. Two cases, the weak and strong shear flows, are considered for the asymmetric lipid microstructures. Three typical asymmetric structures, the membranes, tubes, and vesicle, are included in the phase diagrams, where the effect of two different types of lipid chain length on the formation of asymmetric membranes is evaluated.

View Article and Find Full Text PDF

The sliding dynamics of one- or multi-ring structures along a semiflexible cyclic polymer in radial poly[n]catenanes is investigated using molecular dynamics simulations. The fixed and fluctuating (non-fixed) semiflexible central cyclic polymers are considered, respectively. With increasing bending energy of the central cyclic polymer, for the fixed case, the diffusion coefficient increases monotonically due to the reduction of the tortuous sliding path, while for the fluctuating case, the diffusion coefficient decreases.

View Article and Find Full Text PDF

In this work, the interactions between bottlebrush polymers and phospholipid membranes were investigated using dissipative particle dynamics simulations. The weak and strong adsorption phenomena between the polymers and membranes were examined by calculating the system parameters. A spring model was introduced to explain the variances in the shape factors and the radius of gyration of the bottlebrush polymers, as well as the order parameters of the phospholipid membrane in the pulling processes.

View Article and Find Full Text PDF

The effects of topological constraints on penetration structures of semi-flexible ring polymers in a melt are investigated using molecular dynamics simulations, considering simultaneously the effects of the chain stiffness. Three topology types of rings are considered: 0-knot (the unknotted), 3-knot and 6-knot ring polymers, respectively. With the improved algorithm to detect and quantify the inter-ring penetration (or inter-ring threading), the degree of ring threading does not increase monotonously with the chain stiffness, existing a peak value at the intermediate stiffness.

View Article and Find Full Text PDF

Effective interaction between two asymmetric wedges immersed in a two-dimensional active bath is investigated by computer simulations. The attraction-repulsion transition of effective force between two asymmetric wedges is subjected to the relative position of two wedges, the wedge-to-wedge distance, the active particle density, as well as the apex angle of two wedges. By exchanging the position of the two asymmetric wedges in an active bath, firstly a simple attraction-repulsion transition of effective force occurs, completely different from passive Brownian particles.

View Article and Find Full Text PDF

Asymmetric phospholipid microstructures, such as asymmetric phospholipid membranes, have potential applications in biological and medicinal processes. Here, we used the dissipative particle dynamics simulation method to predict the asymmetric phospholipid microstructures in aqueous solutions. The asymmetric phospholipid membranes, tubes and vesicles are determined and characterized by the chain density distributions and order parameters.

View Article and Find Full Text PDF

Coarse-grained molecular dynamics simulations are used to investigate the conformations of binary semiflexible ring polymers (SRPs) of two different lengths confined in a hard sphere. Segregated structures of SRPs in binary mixtures are strongly dependent upon the number density of system (), the bending energy of long SRPs (, long), and the chain length ratio of long to short SRPs (α). With a low or a weak , long at a small ratio α, long SRPs are immersed randomly in the matrix of short SRPs.

View Article and Find Full Text PDF

Shear-induced microstructures and their corresponding dynamic processes are investigated for phospholipid cylinders in aqueous solution by dissipative particle dynamic simulation. Various phospholipid cylinders with cross-sections, which are formed under shear-free flow, are selected to examine the effects of shear flow on their structures and dynamic processes. Shear flow induces the transition from cylinders into vesicles at weak rate and the transition into vesicle-lamella mixtures with increased shear rate and lamella structures at the strong shear rate.

View Article and Find Full Text PDF

The effect of the polymer chain topology structure on the adsorption behavior in the polymer-nanoparticle (NP) interface is investigated by employing coarse-grained molecular dynamics simulations in various polymer-NP interaction and chain stiffness. At a weak polymer-NP interaction, ring chain with a closed topology structure has a slight priority to occupy the interfacial region than linear chain. At a strong polymer-NP interaction, the "middle" adsorption mechanism dominates the polymer local packing in the interface.

View Article and Find Full Text PDF