Publications by authors named "Ling N Jin"

Eukaryotic harmful and toxic microalgae, along with their derived toxins, pose significant threats to seafood safety, human health, and marine ecosystems. Here, we developed a novel full-length 18S rRNA database for harmful and toxic microalgae and combined metabarcoding with toxin analyses to investigate the ecological patterns of phytoplankton communities and the underlying mechanism of associated toxic microalgae risks. We identified 79 harmful and toxic species in Hong Kong's coastal waters, with dinoflagellates and diatoms representing the majority of toxic and harmful taxa, respectively.

View Article and Find Full Text PDF

Biomass burning organic aerosols (BBOAs) represent a major global health hazard. Their toxicity varies significantly due to the diversity of combustion conditions, which shape mixtures of components with differing toxic potency. We quantified component-specific contributions to intracellular reactive oxygen species generation in human bronchial epithelial cells exposed to BBOAs produced under controlled combustion conditions.

View Article and Find Full Text PDF

Ozone (O) is a major global air pollutant. Recent epidemiological studies have suggested links between O exposure and outbreaks of infectious diseases. However, whether environmentally relevant levels of O exacerbate the colonization and infection of airborne pathogens remains unclear.

View Article and Find Full Text PDF

Fine particulate matter (particulate matter with a diameter of 2.5 μm or less; PM) causes millions of premature deaths globally, but not all particles are equally harmful. Current air-pollution control strategies, prioritizing PM mass reduction, have provided considerable health benefits but further refinements based on differences in the toxicity of various emission sources may provide greater benefits.

View Article and Find Full Text PDF

Tire wear particles (TWPs) and TWP-derived compounds have caused global concern for their toxicity, but their impacts on vegetables, particularly through foliar absorption, remain largely unknown. We investigated the absorption, translocation, accumulation, and metabolism of TWP-derived p-phenylenediamines (PPDs) and PPD-quinones (PPDQs) in hydroponic and soil-cultured leafy vegetables by exposing them to TWPs through roots and leaves. PPDs and PPDQs can be absorbed by vegetables through both roots and leaves, with subsequent bidirectional translocation within vegetables.

View Article and Find Full Text PDF

Marine mammal skin, in contact with seawater containing diverse chemicals, reflects species health and environmental quality. The contributions of natural toxins and anthropogenic contaminants to the effects of such chemical mixtures remain poorly quantified. Using skin fibroblast cells from the Indo-Pacific finless porpoise and humpback dolphin, we assessed the toxic potential of seawater extracts, focusing on cytotoxicity and intracellular reactive oxygen species (ROS) formation.

View Article and Find Full Text PDF

Organic pollutants exist in various physical states within the natural environment, yet it remains unclear how their physical states influence their toxicity characteristics. This study investigated the phase-dependent genotoxicity and combined effects of two organic compounds, -butyl hydroperoxide (TBHP) and dimethyl sulfate (DES), in both gaseous and aqueous phases. Given the substantial differences in concentrations for the same compound in gaseous and aqueous environments, we constructed the complete multitoxic and dose-response curves for gene induction in both phases, covering environmentally relevant concentrations.

View Article and Find Full Text PDF

Black carbon (BC) significantly influences climate change through light absorption. Traditional emission inventories equate BC with elemental carbon (EC) and overlook the variability in its properties across sources, leading to uncertainties in climate predictions. This study shows that EC from solid fuel combustion contains substantial low-maturity EC (char), whose emissions increase alongside the light absorption of soluble organic carbon (OC) as the fuel aromaticity rises.

View Article and Find Full Text PDF

Tri-n-butyl phosphate (TnBP) and tricresyl phosphate (TCP), emerging flame retardants and plasticizers, have garnered increasing attention due to their potential risks to ecosystem. A few researches regarding the toxicological mechanisms of TnBP and TCP had been performed, while molecular-level toxic effects of them and metabolic response using microbial models are the lack of relevant investigation. Thus, we investigated the cytotoxicity, oxidative stress response, and metabolic response in E.

View Article and Find Full Text PDF

Airborne pathogens and antimicrobial resistance (AMR) present significant global health threats. Household waste collection facilities (WCFs), crucial initial nodes in urban waste management systems, have been understudied in regards to their role in emitting these hazards. This study investigated the abundance, composition, sources, driving mechanisms, and health risks associated with pathogens and AMR originating from WCFs in a major city, using culture-based analysis, high-throughput sequencing, and health risk modeling, respectively.

View Article and Find Full Text PDF

The Dazu Rock Carvings, a UNESCO World Heritage site with over a millennium of history, are facing significant deterioration from microbial biofilms. However, the key microbial species responsible and the environmental factors driving their growth remain unclear. To address this gap, we conducted metagenomic sequencing to characterize the microbial community on the carvings, followed by correlation analyses with a variety of environmental factors in the surrounding air and within the rocks.

View Article and Find Full Text PDF

Exposure to atmospheric aerosols threatens human health and is yet to be effectively addressed globally. Aerosol toxicity strongly depends upon components whose chemical profiles and concentrations can constantly evolve throughout atmospheric transformation, inhalation, distribution, metabolism, and excretion. Despite the abundant studies on aerosol components and their toxic effects, the dynamics in component concentrations and related biological effects from air to the body remain unclear.

View Article and Find Full Text PDF

Shotgun metagenomics has become a pivotal technology in microbiome research, enabling in-depth analysis of microbial communities at both the high-resolution taxonomic and functional levels. This approach provides valuable insights of microbial diversity, interactions, and their roles in health and disease. However, the complexity of data processing and the need for reproducibility pose significant challenges to researchers.

View Article and Find Full Text PDF

This study investigates the uptake, biotransformation, and phytotoxicity of sulfadiazine (SDZ) and its acetyl derivative -acetylsulfadiazine (NASDZ) in rice. Results showed that rice was more tolerant to NASDZ, with lower malondialdehyde and reactive oxygen species levels but higher antioxidant enzyme activities (SOD, POD, and CAT). The maximum accumulations of SDZ in roots and shoots were 19.

View Article and Find Full Text PDF

Volatile organic compounds (VOCs) are significant pollutants found in various environments, posing health risks. Traditionally, the gaseous VOCs are adsorbed and eluted in liquid phases, and then subjected to toxicity testing, which deviates from the actual exposure scenarios of gaseous VOCs. How the physical states of VOCs (gaseous or liquid) affect their toxicity has not been well understood.

View Article and Find Full Text PDF