Cell Death Discov
July 2025
Tumor cells balance ATP production and carbon skeleton synthesis by flexibly altering catabolic pathways to sustain their significant growth advantage. Uncouplers have shown potential for tumor suppression by converting chemical energy from catabolism into heat. However, their use may be limited due to indiscriminate metabolic interference in both tumor and normal cells, as well as the uncertainty surrounding their effects on the immune microenvironment.
View Article and Find Full Text PDFComput Struct Biotechnol J
April 2025
Recent research on Polycystic Ovary Syndrome (PCOS) detection increasingly employs intelligent algorithms to assist gynecologists in more accurate and efficient diagnoses. However, intelligent PCOS detection faces notable challenges: absence of standardized feature taxonomies, limited research on available datasets, and insufficient understanding of existing detection tools' capabilities. This paper addresses these gaps by introducing a novel analytical framework for PCOS diagnostic research and developing a comprehensive taxonomy comprising 108 features across 8 categories.
View Article and Find Full Text PDFVolatile anesthetics have been widely applied during surgery, but the potential mechanisms by which they influence loss of consciousness (LOC), anesthesia maintenance, and recovery of consciousness (ROC) from anesthesia remain largely unknown. Recent studies have suggested that anesthesia-induced unconsciousness may be due to specific interactions between neural circuits that regulate sleep and wakefulness. Supramammillary (SuM) glutamatergic neurons are essential for sleep-wakefulness regulation.
View Article and Find Full Text PDFLenvatinib, endorse as a first-line targeted therapy, has demonstrated efficacy in extending the survival span of individuals afflicted with advanced Hepatocellular carcinoma (HCC). However, its therapeutic effect wears off with time, which is ascribed to the cancer cell's tendency to evade and tamper with its usual modes of action, severely limiting its clinical use. This study devises an innovative therapeutic modality involving the synergistic co-delivery of FePt nanoparticles (NPs) and Lenvatinib via poly lactic-co-glycolic acid (PLGA) NPs encase in HCC cell membranes (Len/FePt@CMP NPs).
View Article and Find Full Text PDFBiomaterials
August 2025
Cell death-based therapies combined with immunotherapy have great potential in cancer therapy. To further explore and apply the combined therapies, the immunogenicity of different cell death modes in colorectal cancer (CRC) was evaluated by a cause-and-effect framework encompassing 12 cell death modes. Results show robust correlations among cuproptosis, immunogenic cell death (ICD) and immunity in CRC, as observed in our in-house and other independent cohorts, which are substantiated by in vitro and in vivo experiments.
View Article and Find Full Text PDFLiver fibrosis represents a progressive pathological condition that can culminate in severe hepatic dysfunction, potentially advancing to cirrhosis and liver cancer. The extent of liver fibrosis is intrinsically associated with the quantity of collagen fibers. Although liver biopsy and ultrasound imaging are standard diagnostic tools, their application is constrained by risks of significant complications and variability in different investigators, respectively.
View Article and Find Full Text PDFBackground Photoacoustic microscopy (PAM) can be used to detect strong absorption from endogenous and exogenous contrast material, making it promising for detailed structural and functional imaging of hepatic sinusoids, including dynamic visualization of permeability. Purpose To evaluate whether PAM-based quantitative parameters of liver function and integrity (lacunarity, blood oxygen saturation [Sao], and Evans blue [EB] permeability) are associated with histopathologic indexes of fibrosis in a mouse model. Materials and Methods Between October 2022 and July 2023, a total of 35 male C57BL/6 mice were included in this study and received intraperitoneal injection of carbon tetrachloride to establish mouse models of progressive liver fibrosis, with seven mice in each group.
View Article and Find Full Text PDFPrecise and effective management of myocardial ischemia/reperfusion injury (MIRI) is still a formidable challenge in clinical practice. Additionally, real-time monitoring of drug aggregation in the MIRI region remains an open question. Herein, a drug delivery system, hesperadin and ICG assembled in PLGA-Se-Se-PEG-IMTP (HI@PSeP-IMTP), is designed to deliver hesperadin and ICG to the MIRI region for in vivo optical imaging tracking and to ameliorate MIRI.
View Article and Find Full Text PDFIntracranial optical imaging of glioblastoma (GBM) is challenging due to the scarcity of effective probes with blood-brain barrier (BBB) permeability and sufficient imaging depth. Herein, we describe a rational strategy for designing optical probes crossing the BBB based on an electron donor-π-acceptor system to adjust the lipid/water partition coefficient and molecular weight of probes. The amphiphilic hemicyanine dye (namely, IVTPO), which exhibits remarkable optical properties and effective BBB permeability, is chosen as an efficient fluorescence/photoacoustic probe for in vivo real-time imaging of orthotopic GBM with high resolution through the intact skull.
View Article and Find Full Text PDFMultispectral photoacoustic tomography (PAT) is an imaging modality that utilizes the photoacoustic effect to achieve non-invasive and high-contrast imaging of internal tissues but also molecular functional information derived from multi-spectral measurements. However, the hardware cost and computational demand of a multispectral PAT system consisting of up to thousands of detectors are huge. To address this challenge, we propose an ultra-sparse spiral sampling strategy for multispectral PAT, which we named U3S-PAT.
View Article and Find Full Text PDFCupping therapy, a traditional Chinese medicinal practice, has been subjected to scientific scrutiny to validate its effects on local tissue microenvironments. This study provides a quantitative assessment of cupping therapy at different negative pressures using photoacoustic imaging. Low-pressure cupping (-20 kPa) significantly improved local blood circulation, evidenced by increased hemoglobin oxygen saturation and vessel dilation that normalized within two hours.
View Article and Find Full Text PDFTreating glioblastoma (GBM) with single-agent chemotherapy is often ineffective due to inefficient drug delivery and the immunosuppressive tumor microenvironment, which leads to drug resistance. Strategies that activate programmed cell death mechanisms and repolarized tumor-associated macrophages toward an antitumoral M1-like phenotype can help reverse the immunosuppressive tumor microenvironment. In this study, a novel approach using NIR-II (1000-1700 nm) photoacoustic imaging (PAI)-guided chemo-photothermal therapy is presented.
View Article and Find Full Text PDFAdvancements in precision medicine necessitate understanding drug clearance pathways, especially in organs like the liver and kidneys. Traditional techniques such as PET/CT pose radiation hazards, whereas optical imaging poses challenges in maintaining both depth penetration and high resolution. Moreover, very few longitudinal studies have been performed for drug candidates for different symptoms.
View Article and Find Full Text PDFHepatocellular carcinoma (HCC) is typically characterized by rich vascularity, with angiogenesis playing a crucial role in its growth and invasion. Molecular imaging of specific receptors in blood vessels is crucial in HCC diagnosis. In particular, in vivo imaging utilizing the second near-infrared (NIR-II) window offers improved tissue penetration, reduced light scattering, and lower autofluorescence.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
September 2025
The application of computer vision-powered large language models (LLMs) for medical image diagnosis has significantly advanced healthcare systems. Recent progress in developing symmetrical architectures has greatly impacted various medical imaging tasks. While CNNs or RNNs have demonstrated excellent performance, these architectures often face notable limitations of substantial losses in detailed information, such as requiring to capture global semantic information effectively and relying heavily on deep encoders and aggressive downsampling.
View Article and Find Full Text PDFEur J Nucl Med Mol Imaging
May 2024
Purpose: Fibroblast activation protein inhibitor (FAPI) -based probes have been widely studied in the diagnosis of various malignant tumors with positron emission tomography/computed tomography (PET/CT). However, current imaging studies of FAPI-based probes face challenges in rapid clearance rate and potential false-negative results. Furthermore, FAPI has been rarely explored in optical imaging.
View Article and Find Full Text PDFTumor-associated macrophages (TAMs) are vital in the tumor microenvironment, contributing to immunosuppression and therapy tolerance. Despite their importance, the precise re-education of TAMs in vivo continues to present a formidable challenge. Moreover, the lack of real-time and efficient methods to comprehend the spatiotemporal kinetics of TAMs repolarization remains a significant hurdle, severely hampering the accurate assessment of treatment efficacy and prognosis.
View Article and Find Full Text PDFPhotoacoustics
December 2023
We present a rapid and high-resolution photoacoustic imaging method for evaluating the liver function reserve (LFR). To validate its accuracy, we establish alcoholic liver disease (ALD) models and employ dual-wavelength spectral unmixing to assess oxygen metabolism. An empirical mathematical model fits the photoacoustic signals, obtaining liver metabolism curve and LFR parameters.
View Article and Find Full Text PDFSynergistic therapy strategy and prognostic monitoring of glioblastoma's immune response to treatment are crucial to optimize patient care and advance clinical outcomes. However, current systemic temozolomide (TMZ) chemotherapy and imaging methods for tracing of immune responses are inadequate. Herein, we report an all-in-one theranostic nanoprobe (PEG/αCD25-Cy7/TMZ) for precise chemotherapy and real-time immune response tracing of glioblastoma by photoacoustic-fluorescence imaging.
View Article and Find Full Text PDFJ Appl Physiol (1985)
August 2023
Space travel causes rapid weight loss of astronauts, but the underlying reasons are still obscure. Brown adipose tissue (BAT) is a well-known thermogenesis tissue that is innervated by sympathetic nerves, and norepinephrine stimulation can promote the thermogenesis and angiogenesis of BAT. Herein, the structural and physiological changes of BAT as well as serological indicators were investigated in mice under hindlimb unloading (HU) to simulate a weightless environment in space.
View Article and Find Full Text PDFMol Imaging Biol
August 2023
Purpose: Metabolic acidosis as one of the most common perioperative complications has been associated with increased risks for poor prognosis. Routine monitoring methods include blood gas analysis and electrocardiogram, which are limited by time delay effects. And the existing intravital imaging modalities are difficult to achieve in one step.
View Article and Find Full Text PDFMapping diverse cellular components with high spatial resolution is important to interrogate biological systems and study disease pathogenesis. Conventional optical imaging techniques for mapping biomolecular profiles with differential staining and labeling methods are cumbersome. Different types of cellular components exhibit distinctive characteristic absorption spectra across a wide wavelength range.
View Article and Find Full Text PDFSimultaneous spatio-temporal description of tumor microvasculature, blood-brain barrier, and immune activity is pivotal to understanding the evolution mechanisms of highly aggressive glioblastoma, one of the most common primary brain tumors in adults. However, the existing intravital imaging modalities are still difficult to achieve it in one step. Here, we present a dual-scale multi-wavelength photoacoustic imaging approach cooperative with/without unique optical dyes to overcome this dilemma.
View Article and Find Full Text PDF