Publications by authors named "Zhao Sun"

Background: Autoimmune thyroid disease is an autoimmune disease. Observational studies have shown that individuals with thyroid dysfunction have dyslipidemia. However, it is uncertain whether there is a causal relationship between the two.

View Article and Find Full Text PDF

Background: The severe adverse events of immunotherapy have limited its clinical application. Immune cell characteristics and plasma metabolites are probably associated with immune-related adverse events, but current studies have not combined the three dynamically. This study is designed to analyze causality between immune cell characteristics and immune-related adverse events, and the degree to which plasma metabolites mediate it.

View Article and Find Full Text PDF

Objectives: Post-surgical prediction of recurrence or metastasis for primary gastrointestinal stromal tumors (GISTs) remains challenging. We aim to develop individualized clinical follow-up strategies for primary GIST patients, such as shortening follow-up time or extending drug administration based on the clinical deep learning radiomics model (CDLRM).

Methods: The clinical information on primary GISTs was collected from two independent centers.

View Article and Find Full Text PDF

Recently, cell therapies, including chimeric antigen receptor (CAR) modified T cell therapy and mesenchymal stem cell (MSC) therapy, have demonstrated considerable potential for systemic lupus erythematosus (SLE). In this study, a CAR-MSC model was constructed, combining two cell therapies. The structural domains of the CAR were designed by using the anti-CD19 scFv, targeting the CD19 antigen on the surface of B cells and the intracellular region of the interferon-gamma receptor, activating the JAK-STAT1 signaling pathway.

View Article and Find Full Text PDF

Single atom and nanocluster catalysts are extensively investigated in heterogeneous catalysis due to their high catalytic activity and atomic utilization, while their coexisting properties and potentially synergistic effect are yet to be clarified. Herein, we construct three systems of atomic-scale catalysts (xNi/MoTiAlC, x = 0.5, 1, and 1.

View Article and Find Full Text PDF

As a member of the NLRs family, NLRC3 has been determined to function in the NF-κB, MAPK, and type I IFN signaling, which are crucial for the host innate immunity and inflammatory response. In this study, an NLRC3 ortholog, named as Lc-NLRC3, was cloned and identified in large yellow croaker (Larimichthys crocea). The gene characteristics analysis revealed that Lc-NLRC3 consists of 18 exons and 17 introns, with a full-length open reading frame (ORF) of 3405 bp, encoding a protein of 1134 amino acids (aa), that containing a N-terminal CARD domain, a central NACHT domain, and a C-terminal LRRs domain.

View Article and Find Full Text PDF

Background: Examined lymph node (ELN) count is a critical factor affecting the number of metastatic lymph nodes (MLNs). The impact of the ELN number on survival and staging remains unclear.

Methods: This study included 4,291 stage N3 GC patients from the SEER database (training cohort) and 567 stage N3 GC patients from the FAHZZU database (validation cohort).

View Article and Find Full Text PDF

Traumatic brain injury (TBI) is a leading cause of disability in adults, significantly affecting patients' quality of life. Extracellular vesicles (EVs) derived from human adipose-derived mesenchymal stem cells (hADSCs) have demonstrated therapeutic potential in TBI treatment. However, their limited targeting ability, short half-life, and low bioavailability present significant challenges for clinical application.

View Article and Find Full Text PDF

Cell death-based therapies combined with immunotherapy have great potential in cancer therapy. To further explore and apply the combined therapies, the immunogenicity of different cell death modes in colorectal cancer (CRC) was evaluated by a cause-and-effect framework encompassing 12 cell death modes. Results show robust correlations among cuproptosis, immunogenic cell death (ICD) and immunity in CRC, as observed in our in-house and other independent cohorts, which are substantiated by in vitro and in vivo experiments.

View Article and Find Full Text PDF

Many factors negatively affect a generalization of the findings in discovery proteomics. They include differentiation between patient cohorts, a variety of experimental conditions, etc. We presented a machine-learning-based workflow for proteomics data analysis, aiming at improving generalizability across multiple data sets.

View Article and Find Full Text PDF

Halide perovskite single crystals have demonstrated enormous potential for next-generation integrated optoelectronic devices. However, there is a lack of a facile method to realize the controllable growth of large-scale, high-quality, and high-resolution perovskite single crystal arrays on diverse types of substrates, which hinders their application in practical scenarios. Here, a one-step wettability-guided blade coating approach is reported for the rapid in situ crystallization of large-scale, multicolor, and sub-100 nm perovskite single-crystal arrays in the ambient environment.

View Article and Find Full Text PDF

Underwater acoustic propagation is a complex phenomenon in the ocean environment. Traditional methods for calculating acoustic propagation loss rely on solving complex partial differential equations. Deep learning methods, leveraging their robust nonlinear approximation capabilities, can model various physical phenomena effectively, significantly reducing computation time and cost.

View Article and Find Full Text PDF

Background: Luteinizing hormone (LH) plays a crucial role in the postnatal development and maturation of gonads. Inactivating mutations of the luteinizing hormone beta subunit (LHB)gene are extremely rare and can result in congenital hypogonadotropic hypogonadism (CHH).

Methods: We conducted DNA sequencing on an 18-year-old female patient with undetectable LH and clinical symptoms of CHH.

View Article and Find Full Text PDF
Article Synopsis
  • * Their chemical structures were determined using advanced techniques like spectroscopy and mass spectrometry, with absolute configurations confirmed through electronic circular dichroism calculations.
  • * The new compounds were tested for their ability to kill cancer cells, showing that one compound was effective against three types of cancer cells (HT-29, A-549, and MCF-7), while the other was effective against only two (HT-29 and MCF-7).
View Article and Find Full Text PDF
Article Synopsis
  • * A 27-year-old male developed severe urinary complications after accidentally ingesting an organophosphate, leading to successful treatment with sacral nerve modulation therapy.
  • * After the treatment, the patient showed significant improvement in symptoms and remains asymptomatic five months later, highlighting the therapy's effectiveness for OPIDN-related issues.
View Article and Find Full Text PDF

Propane dehydrogenation (PDH), an important process for propylene synthesis, relies on expensive noble metals or highly toxic oxides as catalysts. In a recent publication, Gong and co-workers report a breakthrough discovery for PDH by introducing a sustainable catalyst composed of titanium oxide overlayers encapsulating nickel nanoparticles, termed Ni@TiO. This innovative catalyst showcases exceptional performance in PDH, exhibiting high propylene selectivity and stability under industrially relevant conditions.

View Article and Find Full Text PDF

Regulated cell death (RCD) plays a crucial role in the immune microenvironment, development, and progression of hepatocellular carcinoma (HCC). However, reliable immune-related cell death signatures have not been explored. In this study, we collected 12 RCD modes (e.

View Article and Find Full Text PDF

()-1,2-Disubstituted, trisubstituted, and tetrasubstituted alkenes are not only important units in medicinal chemistry, natural product synthesis, and material science but also useful intermediates in organic synthesis. Development of catalytic stereoselective transformations to access multisubstituted alkenes with various substitution patterns from easily accessible modular starting materials and readily available catalysts is a crucial goal in the field of catalysis. Water is an ideal hydrogen source for catalytic transfer hydrogenation despite of the high difficulty to activate water.

View Article and Find Full Text PDF

Late-onset Alzheimer's disease (LOAD) is the most common form of Alzheimer's disease (AD). However, modeling sporadic LOAD that endogenously captures hallmark neuronal pathologies such as amyloid-β (Aβ) deposition, tau tangles, and neuronal loss remains an unmet need. We demonstrate that neurons generated by microRNA (miRNA)-based direct reprogramming of fibroblasts from individuals affected by autosomal dominant AD (ADAD) and LOAD in a three-dimensional environment effectively recapitulate key neuropathological features of AD.

View Article and Find Full Text PDF

Compact and user-friendly nucleic acid biosensors play a crucial role in advancing infectious disease research, particularly for coronavirus (COVID-19). While nanophotonic metasurface sensors hold promise for high-performance sensing, they face challenges due to their complexity and bulky readout instruments. In this study, we propose a gradient nanoplasmonic imaging (GNI) metasurface that incorporates the concept of an optical potential well, enabling label-free single-step detection of SARS-CoV-2 sequences.

View Article and Find Full Text PDF

Catalytic enantioselective alkenylation of aldehydes with easily accessible alkenyl halides promoted by a chiral cobalt complex derived from a newly developed tridentate bisoxazolinephosphine is presented. Such processes represent an unprecedented reaction pathway for cobalt catalysis and a general approach that enable rapid construction of highly diversified enantioenriched allylic alcohols containing a 1,1-, 1,2-disubstituted and trisubstituted alkene as well as axial stereogenicity in up to 99 % yield and 99 : 1 er without the need of preformation of alkenyl-metal reagents. DFT calculations revealed the origin of enantioselectivity.

View Article and Find Full Text PDF

Background: Malignant mesothelioma (MM) is an exceedingly rare tumor with poor prognosis due to the limited availability of effective treatment. Immunotherapy has emerged as a novel treatment approach for MM, but less than 40% of the patients benefit from it. Thus, it is necessary to identify accurate and effective biomarkers that can predict the overall survival (OS) and immunotherapy efficacy for MM.

View Article and Find Full Text PDF

Two new sesterterpenoids, atractylodes japonica terpenoid acid I (1) and atractylodes japonica terpenoid aldehyde I (2), were isolated from the rhizomes of Atractylodes japonica Koidz. ex Kitam together with ten known compounds (3-12). Their structures were elucidated on the basis of comprehensive spectroscopic analysis (1D/2D NMR, HRESIMS and IR).

View Article and Find Full Text PDF

Although PD-1 inhibitors have revolutionized the treatment paradigm of non-small cell lung cancer (NSCLC), their efficacy in treating NSCLC has remained unsatisfactory. Targeting cancer-associated fibroblasts (CAFs) is a potential approach for improving the immunotherapy response. Multitarget antiangiogenic tyrosine kinase receptor inhibitors (TKIs) can enhance the efficacy of PD-1 inhibitors in NSCLC patients.

View Article and Find Full Text PDF

The high stretchability of two-dimensional (2D) materials has facilitated the possibility of using external strain to manipulate their properties. Hence, strain engineering has emerged as a promising technique for tailoring the performance of 2D materials by controlling the applied elastic strain field. Although various types of strain engineering methods have been proposed, deterministic and controllable generation of the strain in 2D materials remains a challenging task.

View Article and Find Full Text PDF