Publications by authors named "Junbao Wang"

Fe nanocluster-assembled thin films with thicknesses ranging from 1000 to 1400 nm were fabricated using the plasma-gas-condensation technique. The study reveals that the films composed of Fe nanoclusters have an average grain size of approximately 7.7 nm, and throughout the temperature span of 5 to 300 K, the films exhibit an anomalous Hall coefficient () reaching approximately 1.

View Article and Find Full Text PDF

Introduction: Anxiety-like insomnia is a known risk factor for the onset and worsening of certain neurological diseases, including Alzheimer's disease. Due to the adverse effects of current anti-insomnia medications, such as drug dependence and limited safety, researchers are actively exploring natural bioactive compounds to mitigate anxiety-like insomnia with fewer side effects. Mackerel (), a traditional Chinese medicine, is known for its tonic effects and is commonly used to treat neurasthenia.

View Article and Find Full Text PDF

The β-catenin-dependent canonical Wnt signaling is pivotal in organ development, tissue homeostasis, and cancer. Here, we identified an upstream enhancer of - the coding gene for β-catenin, named ieCtnnb1 (ntestinal nhancer of ), which is crucial for intestinal homeostasis. ieCtnnb1 is predominantly active in the base of small intestinal crypts and throughout the epithelia of large intestine.

View Article and Find Full Text PDF

A highly sensitive optical fiber Fabry-Perot interferometer (FPI) for strain measurement with temperature compensation is proposed. Instead of using another actual reference interferometer, a virtual FPI is constructed to superpose with the sensing FPI to form the Vernier effect. The fundamental and the first-order harmonic Vernier effect are generated to increase the sensitivity by adjusting the parameter of the virtual FPI.

View Article and Find Full Text PDF

The hippocampus plays major roles in learning and memory, and its formation requires precise coordination of patterning, cell proliferation, differentiation, and migration. Here we removed the chromatin-association capability of KDM2B in the progenitors of developing dorsal telencephalon (Kdm2b) to discover that Kdm2b hippocampus, particularly the dentate gyrus, became drastically smaller with disorganized cellular components and structure. Kdm2b mice display prominent defects in spatial memory, motor learning and fear conditioning, resembling patients with KDM2B mutations.

View Article and Find Full Text PDF

As an important resource insect, the is widely distributed in the eastern and central parts of China. The cicada slough is one of the traditional crude drugs in East Asia, and the main component is polysaccharide, which has the functions of anti-convulsion, relieving asthma and improving lipid metabolism. The parasitoid fungus which grows inside the cicada nymphs and forms the fruiting bodies on the surface of the host's carcass, is also known as the "cicada flower" in China.

View Article and Find Full Text PDF

Stress-elevated glucocorticoids cause circadian disturbances and gut-brain axis (GBA) disorders, including irritable bowel syndrome (IBS). We hypothesized that the glucocorticoid receptor (GR/NR3C1) might cause chromatin circadian misalignment in the colon epithelium. We observed significantly decreased core circadian gene in water avoidance stressed (WAS) BALB/c colon epithelium, like in IBS patients.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM), a highly malignant and heterogeneous brain tumor, contains various types of tumor and non-tumor cells. Whether GBM cells can trans-differentiate into non-neural cell types, including mural cells or endothelial cells (ECs), to support tumor growth and invasion remains controversial. Here we generated two genetic GBM models de novo in immunocompetent mouse brains, mimicking essential pathological and molecular features of human GBMs.

View Article and Find Full Text PDF

Due to the high addiction and side effects of medicines, people have increasingly inclined to natural and healthy peptides to improve sleep. Herein, we isolated novel peptides with sleep-promoting ability from bone peptides (PBPs) and constructed an insomniac zebrafish model as a demonstration, incorporating behavioral and transcriptomic approaches to reveal the sleep-promoting effect and mechanism of PBPs. Specifically, a sequential targeting isolation approach was developed to refine and identify a peptide with remarkable sleep-promoting activity, namely TG7 (Tyr-Gly-Asn-Pro-Trp-Glu-Lys).

View Article and Find Full Text PDF

β-catenin-dependent canonical Wnt signaling plays a plethora of roles in neocortex (Ncx) development, but its function in regulating the abundance of intermediate progenitors (IPs) is elusive. Here we identified neCtnnb1, an evolutionarily conserved cis-regulatory element with typical enhancer features in developing Ncx. neCtnnb1 locates 55 kilobase upstream of and spatially close to the promoter of Ctnnb1, the gene encoding β-catenin.

View Article and Find Full Text PDF

The production and expansion of intermediate progenitors (IPs) are essential for neocortical neurogenesis during development and over evolution. Here, we have characterized an epigenetic circuit that precisely controls neurogenic programs, particularly properties of IPs, during neocortical development. The circuit comprises a long non-coding RNA (LncBAR) and the BAF (SWI/SNF) chromatin-remodeling complex, which transcriptionally maintains the expression of Zbtb20.

View Article and Find Full Text PDF

Long non-coding RNAs (lncRNAs) regulate transcription to control development and homeostasis in a variety of tissues and organs. However, their roles in the development of the cerebral cortex have not been well elucidated. Here, a bioinformatics pipeline was applied to delineate the dynamic expression and potential cis-regulating effects of mouse lncRNAs using transcriptome data from 8 embryonic time points and sub-regions of the developing cerebral cortex.

View Article and Find Full Text PDF

The mechanisms underlying development processes and functional dynamics of neural circuits are far from understood. Long non-coding RNAs (lncRNAs) have emerged as essential players in defining identities of neural cells, and in modulating neural activities. In this review, we summarized latest advances concerning roles and mechanisms of lncRNAs in assembly, maintenance and plasticity of neural circuitry, as well as lncRNAs' implications in neurological disorders.

View Article and Find Full Text PDF

In order to investigate the mechanical properties of lime mudstone, conventional triaxial compression tests under different confining pressures (0, 5, 15 and 20 MPa) are performed on lime mudstone samples. The test results show that, from the overall perspective of variation law, the axial peak stress, axial peak strain and elastic modulus of lime mudstone tend to gradually increase with increasing confining pressure. In the range of tested confining pressure, the variations in axial peak stress and elastic modulus with confining pressure can be described with linear functions; while the variation in axial peak strain with confining pressure can be reflected with a power function.

View Article and Find Full Text PDF

The functional synergy between the metal and the semiconductor in metal-semiconductor hybrid nanocrystals with specific structures and morphologies makes them suitable candidates for a wide range of applications. To date, the synthesis and the corresponding properties of ternary metal-semiconductor hetero-nanostructures, especially for hybrid nanocrystals containing magnetic metals, are seldom discussed and thus worthy of extensive research. In this study, we report a nonaqueous approach for the synthesis of Ni-Au-ZnO ternary hybrid nanocrystals with three morphologies, including nanomultipods, matchstick-like nanorods and nanopyramids.

View Article and Find Full Text PDF

The combination of metal and semiconductor components in nanoscale to form a hybrid nanocrystal provides an important approach for achieving advanced functional materials with special optical, magnetic and photocatalytic functionalities. Here, a facile solution method is reported for the synthesis of Au-Ni-ZnO metal-semiconductor hybrid nanocrystals with a flower-like morphology and multifunctional properties. This synthetic strategy uses noble and magnetic metal Au@Ni nanocrystal seeds formed in situ to induce the heteroepitaxial growth of semiconducting ZnO nanopyramids onto the surface of metal cores.

View Article and Find Full Text PDF

An enhanced anomalous Hall effect is observed in heterogeneous uniform Fe cluster assembled films with different film thicknesses (ta = 160-1200 nm) fabricated by a plasma-gas-condensation method. The anomalous Hall coefficient (Rs) at ta = 1200 nm reaches its maximum of 2.4 × 10(-8) Ω cm G(-1) at 300 K, which is almost four orders of magnitude larger than bulk Fe.

View Article and Find Full Text PDF

A facile nonaqueous injection method has been developed for the construction of one-dimensional nanostructure consisting of a magnetic alloy (Ni-Cu) core and a plasmonic alloy (Au-Cu) shell. The obtained Ni-Cu@Au-Cu nanowires exhibit tunable optical and magnetic properties.

View Article and Find Full Text PDF

There is an urgent need for identification of a new adjuvant capable of selectively promoting an efficient immune response for use with vaccines and especially subunit vaccines. Our pervious study showed that Bursopentine (BP5) is a novel immunomodulatory peptide and has the ability to significantly stimulate an antigen-specific immune response in mice. In this study, the potential adjuvant activities of BP5 were examined in chickens by coinjection of BP5 and an inactivated avian influenza virus (AIV) (A/Duck/Jiangsu/NJ08/05 [AIV H9N2 subtype]).

View Article and Find Full Text PDF