98%
921
2 minutes
20
Long non-coding RNAs (lncRNAs) regulate transcription to control development and homeostasis in a variety of tissues and organs. However, their roles in the development of the cerebral cortex have not been well elucidated. Here, a bioinformatics pipeline was applied to delineate the dynamic expression and potential cis-regulating effects of mouse lncRNAs using transcriptome data from 8 embryonic time points and sub-regions of the developing cerebral cortex. We further characterized a sense lncRNA, SenZfp536, which is transcribed downstream of and partially overlaps with the protein-coding gene Zfp536. Both SenZfp536 and Zfp536 were predominantly expressed in the proliferative zone of the developing cortex. Zfp536 was cis-regulated by SenZfp536, which facilitates looping between the promoter of Zfp536 and the genomic region that transcribes SenZfp536. Surprisingly, knocking down or activating the expression of SenZfp536 increased or compromised the proliferation of cortical neural progenitor cells (NPCs), respectively. Finally, overexpressing Zfp536 in cortical NPCs reversed the enhanced proliferation of cortical NPCs caused by SenZfp536 knockdown. The study deepens our understanding of how lncRNAs regulate the propagation of cortical NPCs through cis-regulatory mechanisms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7870746 | PMC |
http://dx.doi.org/10.1007/s12264-020-00607-2 | DOI Listing |
JCI Insight
September 2025
Department of Internal Medicine, The University of Texas Medical Branch, Galveston, United States of America.
Maternal low thyroxine (T4) serum levels during the first trimester of pregnancy correlate with cerebral cortex volume and mental development of the progeny, but why neural cells during early fetal brain development are vulnerable to maternal T4 levels remains unknown. In this study, using iPSCs obtained from a boy with a loss-of-function mutation in MCT8-a transporter previously identified as critical for thyroid hormone uptake and action in neural cells-we demonstrate that thyroid hormones induce transcriptional changes that promote the progression of human neural precursor cells along the dorsal projection trajectory. Consistent with these findings, single-cell, spatial, and bulk transcriptomics from MCT8-deficient cerebral organoids and cultures of human neural precursor cells underscore the necessity for optimal thyroid hormone levels for these cells to differentiate into neurons.
View Article and Find Full Text PDFbioRxiv
August 2025
Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.
Background: Prematurity is associated with low nephron endowment and an increased risk of chronic kidney disease. Human nephrogenesis is complete at 34-36 weeks gestation, with 60% of nephrons forming during the third trimester through lateral branch nephrogenesis (LBN). We hypothesized that a differentiated but dividing population of nephron progenitor cells (NPCs) would contribute to the amplification of nephrons in late gestation.
View Article and Find Full Text PDFIran J Basic Med Sci
January 2025
Department of Stem Cell and Developmental Biology, Cell Science Research Center, ROYAN Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
Objectives: Cerebral palsy (CP) is the most prevalent pediatric neurodevelopmental disorder. Stem cell therapy is a promising way to treat brain disorders, including CP. This study sought to establish a model using pregnant rats to induce CP similarly to that observed in humans.
View Article and Find Full Text PDFBiology (Basel)
July 2025
Department of Neurosurgery, Heidelberg University Hospital, 69120 Heidelberg, Germany.
Astrocytes, which proliferate after brain injury, represent a promising target for cellular reprogramming due to their abundance and ability to support brain repair. In this study, we investigated the in vitro reprogramming of primary cortical astrocytes from neonatal rats into neuronal precursor cells (NPCs) using the transcription factors Oct4, Sox2, and Klf4 (OSK), delivered via lentiviral vectors. We designed a reporter system to trace the conversion of astrocytes to NPCs and neurons by using GFAP-driven iCre and Nestin- or Synapsin1-driven fluorescent reporters.
View Article and Find Full Text PDFEMBO Rep
July 2025
Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, 230027, Hefei, China.
During brain development, neural progenitor cells (NPCs) undergo rapid division, necessitating efficient ribosomal biogenesis for proliferation. Yet, the regulatory mechanisms remain largely elusive. Here, we report that the DNA binding protein Kin17 exhibits development-dependent expression and plays a vital role in embryonic development.
View Article and Find Full Text PDF