Publications by authors named "Feifan Yu"

3D-printed flexible electronics have the advantage of flexible shapes and the freedom to customize 3D structures to further enhance functionality. However, conventional fabrication methods involve printed conductive inks or multi-material 3D printing, which bring a series of problems for the adhesion strength of the conductive layer and the fabrication complexity. In addition, the metal conductive layer is exposed to air and faces the problem of being susceptible to deterioration.

View Article and Find Full Text PDF

The coal mining industry in Northern Shaanxi is robust, with a prevalent use of the local dialect, known as "Shapu", characterized by a distinct Northern Shaanxi accent. This study addresses the practical need for speech recognition in this dialect. We propose an end-to-end speech recognition model for the North Shaanxi dialect, leveraging the Conformer architecture.

View Article and Find Full Text PDF

Antibody-drug conjugates (ADCs) make up a growing class of targeted therapeutics with important applications in cancer treatment. ADCs are highly modular in nature and thus can be engineered to target any cancer type, but their efficacy is strongly influenced by the specific choice of payload, antibody, and target cell. Considering the number of possible antibody-payload combinations, ADC development would benefit from an efficient method to narrow the number of ADC compositions to those with the highest and most universal potency prior to assessing pharmacokinetics and pharmacodynamics in animal models.

View Article and Find Full Text PDF

Background: The Notch signaling pathway plays a significant role in the gene regulatory network of development of vertebrate and invertebrate. However, as a ligand for the Notch signaling pathway, the mechanism of Delta in the development of Exopalaemon carinicauda is still unclear.

Methods And Results: The Delta's molecular characteristics, tissue distribution and their association with development in E.

View Article and Find Full Text PDF

Fusarium head blight (FHB) is a wheat disease caused by the plant pathogen Fusarium graminearum, which leads to crop yield losses and agricultural economic losses, as well as poses a threat to the environment and human health. Effective biocontrol of F. graminearum is urgent.

View Article and Find Full Text PDF

Single-atom Fe catalysts are considered as the promising catalysts for oxygen reduction reaction (ORR). However, the high electronegativity of the symmetrical coordination N atoms around Fe site generally results in too strong adsorption of *OOH intermediates on the active site, severely limiting the catalytic performance. Herein, a "heteroatom pair synergetic modulation" strategy is proposed to tailor the coordination environment and spin state of Fe sites, enabling breaking the shackles of unsuitable adsorption of intermediate products on the active centers toward a more efficient ORR pathway.

View Article and Find Full Text PDF

Synthesis of highly active and durable oxygen evolution reaction (OER) catalysts applied in acidic water electrolysis remains a grand challenge. Here, we construct a type of high-loading iridium single atom catalysts with tunable d-band holes character (h-HL-Ir SACs, ∼17.2 wt % Ir) realized in the early OER operation stages.

View Article and Find Full Text PDF

Introduction: Common prosperity is a major research project in China, and the scientific measurement and evaluation of common prosperity is very important.

Methods: In this study, firstly, we construct a comprehensive evaluation index system for the common prosperity level (CPL). We then develop an evaluation model of CPL based on prospect theory, probabilistic linguistic ordered weighted distance measure, and the TOPSIS method, wherein we use a probabilistic linguistic term set (PLTS) to describe the uncertainty and complexity of the assessment process.

View Article and Find Full Text PDF

Botulinum neurotoxins (BoNTs) have been widely used clinically as a muscle relaxant. These toxins target motor neurons and cleave proteins essential for neurotransmitter release like Synaptosomal-associated protein of 25 kDa (SNAP-25). In vitro assays for BoNT testing using rodent cells or immortalized cell lines showed limitations in accuracy and physiological relevance.

View Article and Find Full Text PDF

Spatial proteomics has recently garnered significant interest, as it offers to provide unprecedented insight into biological processes in both health and disease, by connecting protein expression patterns from the subcellular level to the tissue or even organism level. These high-content approaches generally rely on a high degree of multiplexing, whereby multiple proteins can be detected simultaneously. The most versatile multiplexing approaches utilize antibodies to confer specificity for various intracellular proteins of interest.

View Article and Find Full Text PDF

The electrochemical oxygen reduction reaction (ORR) is at the heart of modern sustainable energy technologies. However, the linear scaling relationship of this multistep reaction now becomes the bottleneck for accelerating kinetics. Herein, we propose a strategy of using intermetallic-distance-regulated atomic-scale bimetal assembly (ABA) that can catalyse direct O‒O radical breakage without the formation of redundant *OOH intermediates, which could regulate the inherent linear scaling relationship and cause the ORR on ABA to follow a fast-kinetic dual-sites mechanism.

View Article and Find Full Text PDF

Posttraumatic osteoarthritis (PTOA) results in joint pain, loss of joint function, and impaired quality of daily life in patients with limited treatment options. We previously demonstrated that epidermal growth factor receptor (EGFR) signaling is essential for maintaining chondroprogenitors during articular cartilage development and homeostasis. Here, we used a nonsurgical, loading-induced PTOA mouse model to investigate the protective action of EGFR signaling.

View Article and Find Full Text PDF

Herein, a strategy of synergetic dual-metal-ion centers to boost transition-metal-based metal organic framework (MOF) alloy nanomaterials as active oxygen reduction reaction (ORR) electrocatalysts for efficient hydrogen peroxide (H O ) generation is proposed. Through a facile one-pot wet chemical method, a series of MOF alloys with unique Ni-M (M-Co, Cu, Zn) synergetic centers are synthesized, where the strong metallic ions 3d-3d synergy can effectively inhibit O cleavage on Ni sites toward a favorable two-electron ORR pathway. Impressively, the well-designed NiZn MOF alloy catalysts show an excellent H O selectivity up to 90% during ORR, evidently outperforming that of NiCo MOF (45%), and NiCu MOF (55%).

View Article and Find Full Text PDF

Background: Periodontal disease has been associated with gestational complications and both conditions have a high prevalence in rural populations from developing regions. A cross-sectional study was carried out to explore the relationship between periodontal inflamed surface area (PISA), blood pressure (BP), and, serum uric acid levels (UA) in a group of rural North Chinese pregnant women in the third trimester of pregnancy.

Methods: Three hundred and thirty-five rural women aged 20-34 years, with normal body mass index (BMI) were examined in a cross-sectional study during their third trimester of gestation.

View Article and Find Full Text PDF

Antibody-drug conjugates (ADCs) have demonstrated great therapeutic potential due to their ability to target the delivery of potent cytotoxins. However, the heterogeneous nature of conventional drug conjugation strategies can affect the safety, efficacy, and stability of ADCs. Site-specific conjugations can resolve these issues, but often require genetic modification of Immunoglobulin G (IgG), which can impact yield or cost of production, or require undesirable chemical linkages.

View Article and Find Full Text PDF

Osteoarthritis (OA) is a widespread joint disease for which there are no disease-modifying treatments. Previously, we found that mice with cartilage-specific epidermal growth factor receptor (EGFR) deficiency developed accelerated knee OA. To test whether the EGFR pathway can be targeted as a potential OA therapy, we constructed two cartilage-specific EGFR overactivation models in mice by overexpressing heparin binding EGF-like growth factor (HBEGF), an EGFR ligand.

View Article and Find Full Text PDF

Protein fragment complementation assays (PCA) rely on a proximity-driven reconstitution of a split reporter protein activity, typically via interaction between bait and prey units separately fused to the reporter protein halves. The PCA principle can also be formatted for use in immunossays for analyte detection, e.g.

View Article and Find Full Text PDF

Botulinum neurotoxin B is a Food and Drug Administration-approved therapeutic toxin. However, it has lower binding affinity toward the human version of its major receptor, synaptotagmin II (h-Syt II), compared to mouse Syt II, because of a residue difference. Increasing the binding affinity to h-Syt II may improve botulinum neurotoxin B's therapeutic efficacy and reduce adverse effects.

View Article and Find Full Text PDF

Ultrasensitive pressure sensors are constructed with few-layer MoS films. As-designed Fabry-Perot (F-P) sensors exhibit nearly synchronous pressure-deflection responses with a very high sensitivity (89.3 nm Pa ), which is three orders of magnitude higher than those of conventional diaphragm materials (e.

View Article and Find Full Text PDF

The aim of this study was to investigate the phytotoxicity of thin-walled carbon nanotubes (CNTs) to rice (Oryza sativa L.) seedlings. Three different CNTs, including hollow multi-walled carbon nanotubes (MWCNTs), Fe-filled carbon nanotubes (Fe-CNTs), and Fe-Co-filled carbon nanotubes (FeCo-CNTs), were evaluated.

View Article and Find Full Text PDF

In inflammatory disease conditions, the regulation of the cytokine system is impaired, leading to tissue damages. Here, we used protein engineering to develop biologicals suitable for blocking a combination of inflammation driving cytokines by a single construct. From a set of interleukin (IL)-6-binding affibody molecules selected by phage display, five variants with a capability of blocking the interaction between complexes of soluble IL-6 receptor α (sIL-6Rα) and IL-6 and the co-receptor gp130 were identified.

View Article and Find Full Text PDF

Affinity proteins binding to antibody constant regions have proved to be invaluable tools in biotechnology. Here, protein engineering was used to expand the repertoire of available immunoglobulin binding proteins via improvement of the binding strength between the widely used staphylococcal protein A-derived Z domain and the important immunoglobulin isotype mouse IgG₁ (mIgG₁). Addressing seven positions in the 58-residue three-helix bundle Z domain by single or double amino acid substitutions, a total of 170 variants were individually constructed, produced in E.

View Article and Find Full Text PDF

Affinity reagents recognizing constant parts of antibody molecules are invaluable tools in immunotechnology applications, including purification, immobilization, and detection of immunoglobulins. In this article, murine IgG₁, the primary isotype of monoclonal antibodies (mAbs) was used as target for selection of novel binders from a combinatorial ribosome display (RD) library of 10¹¹ affibody molecules. Four rounds of selection using three different mouse IgG₁ mAbs as alternating targets resulted in the identification of binders with broad mIgG₁ recognition and dissociation constants (K(D)) in the low nanomolar to low micromolar range.

View Article and Find Full Text PDF

Development of molecules with the ability to selectively inhibit particular protein-protein interactions is important in providing tools for understanding cell biology. In this work, we describe efforts to select small Ras- and Raf-specific three-helix bundle affibody binding proteins capable of inhibiting the interaction between H-Ras and Raf-1, from a combinatorial library displayed on bacteriophage. Target-specific variants with typically high nanomolar or low micromolar affinities (K(D)) could be selected successfully against both proteins, as shown by dot blot, ELISA and real-time biospecific interaction analyses.

View Article and Find Full Text PDF