A PHP Error was encountered

Severity: Warning

Message: opendir(/var/lib/php/sessions): Failed to open directory: Permission denied

Filename: drivers/Session_files_driver.php

Line Number: 365

Backtrace:

File: /var/www/html/index.php
Line: 317
Function: require_once

Shanghai R&D Center for Standardization... Publications | LitMetric

52,923 results match your criteria: "Shanghai R&D Center for Standardization of Chinese Medicines[Affiliation]"

Nanoimprinting Pattern on Responsive Microwrinkles for Dynamic Optical Diffraction and Reflection.

ACS Nano

September 2025

Frontiers Science Center for Transformative Molecules, State Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.

Dynamic micro/nano-structured surfaces play pivotal roles in biological systems and engineering applications. Despite considerable progress has been made in fabricating precisely ordered architectures, achieving controlled motion in top-down fabricated structures remain a formidable challenge. Here, we introduce an advanced dynamic micron-nano optical platform featuring hierarchical microscale wrinkles integrated with ordered nanoscale arrays.

View Article and Find Full Text PDF

Marine-derived enzymes often show distinct physiological properties and great potential for industrial use. Salt ions may improve the stability and expression efficiency of marine enzymes, which requires salt-resistant host based expression platform. Aspergillus oryzae of good protein expression and secretion was evaluated and explored for this purpose.

View Article and Find Full Text PDF

Purpose: To investigate the images and treatment differences for Type IIIa atlantoaxial rotary dislocation (AARD) by comparing the imaging characteristics of patients with Type III and Type IIIa AARD.

Methods: The present study retrospectively analyzed a cohort of 35 patients who underwent posterior C1-C2 intra-articular fusion due to AARD from our hospital database. Among them, 23 patients were diagnosed with Type III AARD, while the remaining 12 patients were diagnosed with Type IIIa AARD.

View Article and Find Full Text PDF

Prognostic value of multiparameter [Ga]Ga-DOTA-FAPI-04 PET/MR imaging biomarkers for patients with advanced pancreatic cancer.

Eur J Nucl Med Mol Imaging

September 2025

Department of Nuclear Medicine, Changhai Hospital, Naval Medical University, 168 Changhai Road, Yang Pu District, Shanghai, 200433, China.

Purpose: In this retrospective study, whether [Ga]Ga-DOTA-FAPI-04 PET/MR imaging biomarkers can predict the progression-free survival (PFS) and overall survival (OS) of patients with advanced pancreatic cancer was investigated.

Methods: Fifty-one patients who underwent [Ga]Ga-DOTA-FAPI-04 PET/MR scans before first-line chemotherapy were recruited. Imaging biomarkers, including the maximum tumor diameter, minimum apparent diffusion coefficient (ADC), maximum and mean standardized uptake values (SUV and SUV), fibroblast activation protein- (FAP-) positive tumor volume (FTV and W-FTV) and total lesion FAP expression (TLF and W-TLF), were recorded for primary and whole-body tumors.

View Article and Find Full Text PDF

Alpha-2-macroglobulin (A2M) is a critical biomarker implicated in inflammation, immune regulation, coagulation, and various pathological conditions such as liver fibrosis, neurodegenerative diseases, and cancers. However, its precise quantification remains challenging due to complex conformational dynamics, subtle abundance fluctuations, and interference from plasma proteins. Here, we present a label-free dynamic single-molecule sensing (LFDSMS) strategy for the sensitive and specific detection of A2M.

View Article and Find Full Text PDF

Surface-Driven Electron Localization and Defect Heterogeneity in Ceria.

J Am Chem Soc

September 2025

Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, London WC1H 0AJ, U.K.

The exceptional performance of ceria (CeO) in catalysis and energy conversion is fundamentally governed by its defect chemistry, particularly oxygen vacancies. The formation of each oxygen vacancy (V) is assumed to be compensated by two localized electrons on cations (Ce). Here, we show by combining theory with experiment that while this 1 V: 2Ce ratio accounts for the global charge compensation, it does not apply at the local scale, particularly in nanoparticles.

View Article and Find Full Text PDF

Zinc Phosphate Passivation Enables Photostable Pixelated Quantum Dot Color Conversion Layers for Display Applications.

J Phys Chem Lett

September 2025

State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300401, P. R. China.

Quantum dots (QDs) converted to micro light-emitting diodes (LEDs) have emerged as a promising technology for next-generation display devices. However, their commercial application has been hindered by the susceptibility of QDs to photodegradation when directly exposed to an open environment. Here, we develop functional ligand zinc bis[2-(methacryloyloxy)ethyl] phosphate (Zn(BMEP)) to passivate QD surface anions through a phosphine-mediated surface reaction.

View Article and Find Full Text PDF

High-Performance Air-Stable Polymer Monolayer Transistors for Monolithic 3D CMOS logics.

Adv Mater

September 2025

State Key Laboratory of Fabrication Technologies for Integrated Circuits, Chinese Academy of Sciences, Beijing, 100029, China.

The monolayer transistor, where the semiconductor layer is a single molecular layer, offers an ideal platform for exploring transport mechanisms both theoretically and experimentally by eliminating the influence of spatially correlated microstructure. However, the structure-property relations in polymer monolayers remain poorly understood, leading to low transistor performance to date. Herein, a self-confinement effect is demonstrated in the polymer monolayer with nanofibrillar microstructures and edge-on orientation, as characterized by the 4D scanning confocal electron diffraction method.

View Article and Find Full Text PDF

Hydrogen Radical Mediated Concerted Electron-Proton Transfer in 1D Sulfone-based Covalent Organic Framework for Boosting Photosynthesis of HO.

Angew Chem Int Ed Engl

September 2025

College of Smart Materials and Future Energy, Fudan University, Songhu Road 2005, Shanghai, 200438, P.R. China.

Solar-driven photocatalytic oxygen reduction reaction using covalent organic frameworks (COFs) offers a promising approach for sustainable hydrogen peroxide (HO) production. Despite their advantages, the reported COFs-based photocatalysts suffer insufficient photocatalytic HO efficiency due to the mismatched electron-proton dynamics. Herein, we report three one-dimensional (1D) COF photocatalysts for efficient HO production via the hydrogen radical (H•) mediated concerted electron-proton transfer (CEPT) process.

View Article and Find Full Text PDF

Vitamin D Binding Protein, a Ligand of Integrin beta 1, Motivates Both Tumor Cells and Schwann Cells to Promote Perineural Invasion in Pancreatic Ductal Adenocarcinoma.

Adv Sci (Weinh)

September 2025

State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.

Perineural invasion (PNI) is a common pathological characteristic of pancreatic ductal adenocarcinoma (PDAC), closely linked to postoperative recurrence, metastasis, and unfavorable prognosis. Nevertheless, the precise mechanisms that govern PNI in PDAC remain poorly elucidated. Here, group-specific component protein (GC) is identified as one of the most significantly upregulated genes related to PNI, primarily derived from malignant ductal cells compared to other cell types.

View Article and Find Full Text PDF

Conductive Microneedle Patch with Mitochondria-Localized Generation of Nitric Oxide Promotes Heart Repair after Ischemia-Reperfusion Therapy.

Small Methods

September 2025

Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science, Shanghai University, Nantong, 226011, China.

Timely blood resupply is a clinical strategy to treat myocardial infarction, which unavoidably causes myocardial ischemia-reperfusion injury. With disturbed electrical conduction and oxidative stress in infarcted myocardium, injured heart experiences a negative ventricle remodeling process, and finally leads to heart failure. Nitric oxide (NO) is a short-lived signaling molecule regulating cardiovascular homeostasis, while vasodilation of systemic vasculature is accompanied by its exogenous supplementation.

View Article and Find Full Text PDF

Traditional electrochemical redox assessments offer insights into material properties for charge storage and catalytic kinetics but often fail to link these to specific surfaces, obscuring the structure-performance relationship. Here, we reveal the facet-dependent electrochemical redox behaviors and their connection to oxygen evolution reaction (OER) catalysis using Co(OH) nanosheets and nanorods as models. By correlating redox charge storage capacity and kinetics with distinct exposed surfaces, we uncover diffusion-controlled redox processes on the basal surface and non-diffusion-controlled behavior on the lateral surface and further utilize the distinct redox charging kinetics to differentiate the two.

View Article and Find Full Text PDF

Despite significant advancements in aerogels science, the fabrication of high-performance aerogels with their plastic processability remains unexplored owing to their inherent trade-off between skeletal rigidity and transformable processability. Herein, a universal solubility-pKa coupling-effect to engineer high-performance thermoplastic nylon aerogel family with excellent thermomechanical processing performance is proposed. By modulating solubility parameters and acid dissociation constants in nylon-solvent systems, it is precisely control crystallization to assemble interlaced 1D nanofiber skeletons, yielding nylon aerogels that integrate a high specific surface area (226 m g), exceptional compressive modulus (12.

View Article and Find Full Text PDF

Stroke is a severe neurological disorder that significantly impacts patients' recovery and quality of life. Stroke patients frequently experience sleep disorders, including difficulty initiating sleep, insomnia, vivid dreams, and sleep apnea. These disorders not only disrupt nighttime rest but also significantly affect stroke recovery and prognosis, increasing the risks of recurrence and mortality.

View Article and Find Full Text PDF

Diffuse large B-cell lymphoma (DLBCL) requires accurate therapeutic response assessment. This study evaluates the efficacy and prognostic value of [18F] fluorodeoxyglucose positron emission tomography-computed tomography (18F-FDG PET-CT) using the Deauville 5-point scale and maximum standardized uptake value (ΔSUVmax) methods in DLBCL patients. A retrospective study was conducted from January 2021 to December 2022, including 60 DLBCL patients.

View Article and Find Full Text PDF

The global outbreak of the mpox in humans, caused by the mpox virus (MPXV), underscores the urgent need for safe and effective therapeutics. In this study, we characterized the dominant MPXV immunogens, M1R and B6R, by sequencing monoclonal antibodies (MAbs) from the immunized mice and analyzing their epitopes and functions through in vitro and in vivo assessments of binding and antiviral activities. Several broadly effective anti-M1R and anti-B6R neutralizing MAbs were identified and they exhibited enhanced antiviral effects against MPXV or vaccinia virus (VACV) when used in antibody cocktail and bispecific antibody designs.

View Article and Find Full Text PDF

The efficacy of endoscopic submucosal dissection for 10-20 mm rectal neuroendocrine tumors based on resection margin status.

Surg Endosc

September 2025

Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.

Background: Current guidelines recommend that rectal neuroendocrine tumors (NETs) smaller than 10 mm can be treated by endoscopic resection, whereas tumors larger than 20 mm should be treated by surgical resection. However, the optimal treatment of 10-20 mm rectal NETs remains controversial. We aimed to evaluate the efficacy of endoscopic submucosal dissection (ESD) for 10-20 mm rectal NETs based on resection margin status.

View Article and Find Full Text PDF

Zipper endoscopic full-thickness resection: a pilot study in subepithelial tumor management (with video).

Surg Endosc

September 2025

Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China.

Background And Aims: Traditional endoscopic full-thickness resection (EFTR) involves complete removal of the lesion followed by defect closure. The separated resection and closure technique results in mucosal eversion and misalignment of the muscularis propria layers, making reliable closure difficult. Here, we developed an innovative "cut-and-seal-as-you-go" technique, "Zipper-EFTR" and evaluated the feasibility and safety of the new technique.

View Article and Find Full Text PDF

PFGA12 ameliorates Hypoxic-Ischemic brain injury by directly regulating PRDX1 and inhibiting ferroptosis.

Biochem Pharmacol

September 2025

Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai 200336, China; Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai 200336, China. El

Hypoxic-ischemic brain damage (HIBD) is a severe condition leading to extensive neuronal loss and functional impairments, representing a significant challenge in neonatal care. PFGA12, a peptide derived from fibrinogen alpha chain (FGA), which is notably downregulated in the umbilical cord blood of hypoxic-ischemic encephalopathy (HIE) infants. We demonstrate that PFGA12 significantly enhances cell viability and mitigates oxygen-glucose deprivation/reperfusion (OGD/R)-induced neuronal cell death.

View Article and Find Full Text PDF

Topology in Thermal, Particle, and Plasma Diffusion Metamaterials.

Chem Rev

September 2025

Department of Physics, State Key Laboratory of Surface Physics, Fudan University, Shanghai 200438, P. R. China.

Diffusion is a fundamental process in the transfer of mass and energy. Diffusion metamaterials, a class of engineered materials with distinctive properties, enable precise control and manipulation of diffusion processes. Meanwhile, topology, a branch of mathematics, has attracted growing interest within the condensed matter physics community.

View Article and Find Full Text PDF

Muricholic acid mediates puberty initiation via the hypothalamic TGR5 signaling pathway.

Proc Natl Acad Sci U S A

September 2025

Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China.

The onset of puberty is increasingly observed at earlier ages in children, especially in girls with obesity, a trend that predisposes them to long-term metabolic and reproductive disorders in adulthood. Bile acids have emerged as pivotal signaling molecules in both metabolic and reproductive disorders, but remain unexplored in the early onset of puberty in children. Herein, we find elevated levels of muricholic acid (MCA) species in the serum of girls with central precocious puberty, which strongly correlate with indices of hypothalamic-pituitary-gonadal axis activation and can reach peak levels during puberty among healthy children.

View Article and Find Full Text PDF

Tailoring Active Sites in Amorphous NiFe-MOFs through Pyridine Ligand Coordination for Enhanced Oxygen Evolution Performance.

ACS Appl Mater Interfaces

September 2025

Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, P. R. China.

The development of high-performance, cost-effective non-noble metal catalysts for the oxygen evolution reaction (OER) is critical to advancing sustainable hydrogen production via water electrolysis. Herein, we report a facile and mild strategy for synthesizing amorphous bimetallic organic framework materials (NiFe-MOFs) using pyridine-modified threonine (l-PyThr) as an organic ligand. The optimized NiFe-PyThr-4:1 catalyst exhibits remarkable OER activity, requiring low overpotentials of only 162 and 222 mV to achieve current densities of 10 and 100 mA cm, respectively, along with a small Tafel slope of 34.

View Article and Find Full Text PDF

Combined Transcriptomic and Metabolomic Analysis Reveals an Ethylene-Activated Regulatory Model on Monoterpenoid Indole Alkaloid Biosynthesis in Catharanthus roseus.

Plant Biotechnol J

September 2025

Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Plant Biotechnology Research Center, SJTU-Fudan-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai,

Catharanthus roseus contains nearly 200 bioactive monoterpenoid indole alkaloids (MIAs) that are effective in treating cancer and other diseases. Ethylene plays a significant role in enhancing MIA biosynthesis, and we have found that it greatly induces the accumulation of anhydrovinblastine. However, the regulatory mechanisms underlying this process are not yet fully understood.

View Article and Find Full Text PDF

Since the first decentralized clinical trial (DCT) was conducted in 2011, there has been an increased usage of DCT due to its benefits of patient-centricity and generalizability of findings. This trend was further expedited by the global COVID-19 pandemic. We identified 23 case studies across various therapeutic areas and grouped them into different categories according to their purposes-by necessity, for operational benefits, to address unique research questions, to validate innovative digital endpoints, or to validate decentralization as a clinical research platform.

View Article and Find Full Text PDF

Silicon carbide (SiC) membranes combine exceptional chemical, thermal, and mechanical stability but suffer from surface inertness that precludes functionalization. Conversely, MOFs offer unmatched molecular selectivity but are typically powders, severely limiting their practical use. To address this, we develop a generalizable route to fabricate ultrastable MOF@SiC membranes via sequential oxidation and acidification, creating abundant Si-OH sites on SiC surfaces that covalently bond with Zr-MOF crystals; the bonding mechanism between MOFs and substrates has been extensively studied.

View Article and Find Full Text PDF