934 results match your criteria: "Institute of Environment and Sustainable Development in Agriculture[Affiliation]"

PAHs contamination in ports: Status, sources and risks.

J Hazard Mater

August 2024

YASUNI-SDC, Escuela Superior Politécnica de Chimborazo, El Coca 220001, Orellana, Ecuador.

Polycyclic aromatic hydrocarbons (PAHs) constitute important organic contaminants that have been degrading coastal ecosystems over the years. Evaluating PAH status in port ecosystems aligns with societal goals of maintaining clean habitats and sustainability. This comprehensive review systematically analyzed 123 articles, exploring the global distribution, sources, and ecological risks linked to PAH contamination in ports, focusing on water, sediment, and biota.

View Article and Find Full Text PDF

Maize residue retention is an effective agricultural practice for improving soil fertility in black soil region, where suffered from long freezing-thawing periods and intense freeze-thawing (FT) cycles. However, very few studies have examined the influence of maize residue retention on soil microbial communities under FT cycles. We investigated the response of soil microbial communities and co-occurrence networks to maize residue retention at different FT intensities over 12 cycles using a microcosm experiment conditioned in a temperature incubator.

View Article and Find Full Text PDF

Improving the efficiency and environmental safety of emamectin benzoate through a pH-responsive metal-organic framework microencapsulation strategy.

J Hazard Mater

August 2024

College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, China. Electronic address:

Herein, we developed a technique for loading nanopesticides onto Metal-Organic Frameworks (MOFs) to control Spodoptera litura. The average short-axis length of the synthesized carrier emamectin benzoate@PCN-222 @hyaluronic acid (EB@PCN-222 @HA) was ∼40 nm, with an average long-axis length of ∼80 nm. This enabled the manipulation of its size, contact angle, and surface tension on the surface of leaves.

View Article and Find Full Text PDF

Background: Apple Replant Disease (ARD) is common in major apple-growing regions worldwide, but the role of rhizosphere microbiota in conferring ARD resistance and promoting plant growth remains unclear.

Results: In this study, a synthetic microbial community (SynCom) was developed to enhance apple plant growth and combat apple pathogens. Eight unique bacteria selected via microbial culture were used to construct the antagonistic synthetic community, which was then inoculated into apple seedlings in greenhouse experiments.

View Article and Find Full Text PDF

Highly diverse exoenzymes mediate the energy flow from substrates to the multitrophic microbiota within the soil decomposer micro-food web. Here, we used a "soil enzyme profile analysis" approach to establish a series of enzyme profile indices; those indices were hypothesized to reflect micro-food web features. We systematically evaluated the shifts in enzyme profile indices in relation to the micro-food web features in the restoration of an abandoned cropland to a natural area.

View Article and Find Full Text PDF

Nanotechnology could improve the effectiveness and functionality of pesticides, but the size effect of nanopesticides on formulation performance and the related mechanisms have yet to be explored, hindering the precise design and development of efficient and eco-friendly nanopesticides. In this study, two non-carrier-coated imidacloprid formulations (Nano-IMI and Micro-IMI) with identical composition but varying particle size characteristics were constructed to exclude other interferences in the size effect investigation. Nano-IMI and Micro-IMI both exhibited rod-like structures.

View Article and Find Full Text PDF

Unlabelled: Beneficial interactions between plants and rhizosphere fungi can enhance plant adaptability during drought stress. However, harnessing these interactions will require an in-depth understanding of the response of fungal community assembly to drought. Herein, by using different varieties of wheat plants, we analyzed the drought-induced changes in fungal community assembly in rhizosphere and bulk soil.

View Article and Find Full Text PDF

Effects of biogas slurry on hydrothermal carbonization of digestate: Synergistic valorization of hydrochars and aqueous phase.

J Environ Manage

June 2024

College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, 255049, China; Shandong Research Center of Engineering and Technology for Clean Energy, Zibo, Shandong, 255049, China.

In this study, livestock manure digestate (LMD) was used as feedstock for hydrothermal carbonization (HTC) at different temperature (180-260 °C) and residence time (0-4 h). Nutrient flow and distribution during the HTC process were evaluated by comparing the effects of livestock manure biogas slurry (LBS) and ultrapure water (UW) to determine the optimal reaction conditions for the synergistic production and application of hydrochars (HC) and aqueous phases (AP). Compared with UW, the HC yields derived from LBS as solvent were increased by 27.

View Article and Find Full Text PDF

Lactic acid (LA) is an important chemical with broad market applications. To optimize LA production, food waste has been explored as feedstock. Due to the wide variety of food waste types, most current research studies have obtained different conclusions.

View Article and Find Full Text PDF

Understanding the relationship between hydrological connectivity (HC) and water level (WL) is crucial for effective water resource management and wetland restoration. However, current knowledge regarding this relationship is limited. This study proposed an integrated nonstationary and uncertain analysis framework (INUAF) to investigate the HC-WL relationship with reference to the Baiyangdian wetland, which is a fragmented wetland in North China.

View Article and Find Full Text PDF

Regulatory path for soil microbial communities depends on the type and dose of microplastics.

J Hazard Mater

July 2024

Key Laboratory of Prevention and Control of Residual Pollution in Agricultural Film, Ministry of Agriculture and Rural Affairs, Beijing 100081, China; Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China. Electronic addr

To reveal the feedbacks and regulating mechanisms of microplastic types and doses on microbial community, a microcosm experiment was carried out with two non-degradable microplastics [polyethylene (PE) and polyvinyl chloride (PVC)] and four biodegradable microplastics [poly(butylene succinate) (PBS), polyhydroxyalkanoates (PHA), poly(butyleneadipate-co-terephthalate) (PBAT), and polypropylene carbonate (PPC)] at different levels (1 %, 7 %, and 28 %). As a result, the content of total carbon (TC), soil organic carbon (SOC), and microbial biomass carbon (MBC) (expect MBC in PBS soil) increased with increasing doses of microplastics, and increased at the lowest PE dose rate. Biodegradable microplastics created a more active ecological niche while enriching more pathogens than non-degradable microplastics.

View Article and Find Full Text PDF

Cropping systems are considered the largest source of agricultural GHG emissions. Identifying key categories and factors affecting cropping systems is essential for reducing these emissions. Most studies have focused on the carbon budget of cropping systems from the perspective of a single crop or crop category.

View Article and Find Full Text PDF

The necessity for global engineering and technological solutions to address rural environmental challenges is paramount, particularly in improving rural waste treatment and infrastructure. This study presents a comprehensive quantitative analysis of 3901 SCI/SSCI and 3818 Chinese CSCD papers, spanning from 1989 to 2021, using tools like Derwent Data Analyzer and VOSviewer. Our key findings reveal a significant evolution in research focus, including a 716.

View Article and Find Full Text PDF

Bioconversion of agricultural waste by Protaetia brevitarsis larvae (PBL) holds significant promise for producing high-quality frass organic amendments. However, the effects and mechanisms of PBL frass on Cd immobilization in an alkaline environment remain poorly understood. In this study, three types of frass, namely maize straw frass (MF), rice straw frass (RF), and sawdust frass (SF), were produced by feeding PBL.

View Article and Find Full Text PDF

Modified Composite Biodegradable Mulch for Crop Growth and Sustainable Agriculture.

Polymers (Basel)

May 2024

Key Laboratory of Agricultural Film Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China.

Using biodegradable films as a substitute for conventional polyolefin films has emerged as a crucial technology to combat agricultural white pollution. To address the shortcomings in the tensile strength, water vapor barrier properties, and degradation period of PBAT-based biodegradable films, this investigation aimed to create a composite film that could improve the diverse properties of PBAT films. To achieve this, a PBAT/PLA-PPC-PTLA ternary blend system was introduced in the study.

View Article and Find Full Text PDF
Article Synopsis
  • 2, 6-diisopropylaniline (2, 6-DIPA) is an important additive in biodegradable mulching films that can affect both production quality and potential human health risks.
  • The study developed a method combining simultaneous heating hydrolysis-extraction and microextraction to analyze 2, 6-DIPA and its isocyanates in PBAT films using gas chromatography-mass spectrometry.
  • The optimized conditions provided high accuracy and extraction efficiency, demonstrating the method's effectiveness for monitoring and assessing the safety of biodegradable agricultural films.
View Article and Find Full Text PDF

Composting has emerged as a suitable method to convert or transform organic waste including manure, green waste, and food waste into valuable products with several advantages, such as high efficiency, cost feasibility, and being environmentally friendly. However, volatile organic compounds (VOCs), mainly malodorous gases, are the major concern and challenges to overcome in facilitating composting. Ammonia (NH) and volatile sulfur compounds (VSCs), including hydrogen sulfide (HS), and methyl mercaptan (CHS), primarily contributed to the malodorous gases emission during the entire composting process due to their low olfactory threshold.

View Article and Find Full Text PDF

Solid nanodispersion (SND) is an important variety of nanopesticides which have been extensively studied in recent years. However, the key influencing factors for bioactivity enhancement of nanopesticides remain unclear, which not only limits the exploration of relevant mechanisms, but also hinders the precise design and development of nanopesticides. In this study, we explored the potential of SND in enhancing the bioactivity of nanopesticides, specifically focusing on abamectin SND prepared using a self-emulsifying-carrier solidifying technique combined with parameter optimization.

View Article and Find Full Text PDF

The development of nanopesticides provides new avenues for pesticide reduction and efficiency improvement. However, the size effect of nanopesticides remains unclear, and its underlying mechanisms of influence have become a major obstacle in the design and application of pesticide nanoformulations. In this research, the noncarrier-coated emamectin benzoate (EB) solid dispersions (Micro-EB and Nano-EB) were produced under a constant surfactant-to-active ingredient ratio by a self-emulsifying-carrier solidification technique.

View Article and Find Full Text PDF

Soil erosion plays a crucial role in soil organic carbon (SOC) redistribution and mineralization. Meanwhile, the soil extracellular enzymes (EEs) drive C mineralization. However, the response of soil EEs mediated SOC mineralization to soil erosion remains unclear.

View Article and Find Full Text PDF

The issue of cadmium (Cd) contamination in alkaline soils is escalating, necessitating the prompt implementation of effective passivation strategies. Biochar has gained significant attention for its potential in immobilizing heavy metals; however, the suitability of biochar as a remediation material and its micro-scale interaction mechanisms with Cd under alkaline conditions remain unclear. Rape straw (RS) were pyrolyzed at 400 °C (RB400) and 700 °C (RB700) to produce biochar.

View Article and Find Full Text PDF

Metal-Binding Protein TaGlo1 Improves Fungal Resistance to Arsenite (As) and Methylarsenite (MAs) in Paddy Soil.

Environ Sci Technol

April 2024

Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Agricultural Environment, MARA, Beijing 100081, P. R. China.

Trivalent arsenicals such as arsenite (As) and methylarsenite (MAs) are thought to be ubiquitous in flooded paddy soils and have higher toxicity than pentavalent forms. Fungi are widely prevalent in the rice rhizosphere, and the latter is considered a hotspot for As uptake. However, few studies have focused on alleviating As toxicity in paddy soils using fungi.

View Article and Find Full Text PDF

Carbon footprint of maize-wheat cropping system after 40-year fertilization.

Sci Total Environ

May 2024

Department of Soil Science of Temperate Ecosystems, University of Göttingen, 37077 Göttingen, Germany; Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia; Institute of Environmental Sciences, Kazan Federal University, 420049 Kazan, Russia.

Two main challenges which human society faces for sustainable development goals are the maintenance of food security and mitigation of greenhouse gas (GHG) emissions. Here, we examined the impacts of six fertilization treatments including unfertilized control (CK), mineral nitrogen (N, 90 kg N ha), mineral N plus 30 kg P ha phosphorus (NP), NP combined with 3.75 Mg ha straw (NP + Str), farmyard manure (Man, 75 Mg ha), and NP combined with manure (NP + Man) on crop productivity and carbon emissions (soil GHG emission; GHGI, yield-based GHG intensity; NGHGB, net GHG balance; carbon footprint, CF) in a maize-wheat cropping system during two years (April 2018-June 2020) in a semi-arid continental climate after 40 years of fertilization in the Northwest China.

View Article and Find Full Text PDF

Excessive use of tetracycline antibiotics in poultry farming results in significant concentrations of these drugs and tetracycline resistance genes (TRGs) in chicken manure, impacting both environmental and human health. Our research represents the first investigation into the removal dynamics of chlortetracycline (CTC) and TRGs in different layers of an ex situ fermentation system (EFS) for chicken waste treatment. By pinpointing and analyzing dominant TRGs-harboring bacteria and their interactions with environmental variables, we've closed an existing knowledge gap.

View Article and Find Full Text PDF

Unraveling the relationship between soil carbon-degrading enzyme activity and carbon fraction under biogas slurry topdressing.

J Environ Manage

April 2024

Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, Xinjiang, 831100, China; Key Laboratory of Low-carbon Green Agriculture in N

Biogas slurry, a by-product of the anaerobic digestion of biomass waste, predominantly consisting of livestock and poultry manure, is widely acclaimed as a sustainable organic fertilizer owing to its abundant reserves of essential nutrients. Its distinctive liquid composition, when tactfully integrated with a drip irrigation system, unveils immense potential, offering unparalleled convenience in application. In this study, we investigated the impact of biogas slurry topdressing as a replacement for chemical fertilizer (BSTR) on soil total organic carbon (TOC) fractions and carbon (C)-degrading enzyme activities across different soil depths (surface, sub-surface, and deep) during the tasseling (VT) and full maturity stage (R6) of maize.

View Article and Find Full Text PDF