Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cadmium (Cd) pollution in rice agroecosystems has become a pressing worldwide environmental challenge. Straw return leads to Cd re-entering the soil, yet the impact of straw removal (SR) on Cd mobility and bioavailability within this system remains unclear. We implemented a four-season field study to evaluate how different SR intensities (NSR: no rice straw was removed; HSR: half of the rice straw was removed; TSR: all the rice straw was removed) influence Cd availability in this system. Our findings indicated that after three and four consecutive seasons of SR, the DTPA-extractable Cd levels showed notable reductions of 12.2% and 13.7%, respectively. SR also decreased grain Cd concentration (Cd) in subsequent seasons, demonstrating a dose-dependent response. The Cd after one, two, three, and four seasons of TSR treatment fell by 9.0%, 25.2%, 16.8%, and 41.7%, respectively, compared to that following NSR treatment. Notably, late-season SR proved more effective in Cd reduction than early-season SR. Statistical analysis confirmed a strong positive association between Cd and DTPA-extractable Cd. The primary mechanism underlying Cd reduction appears to be the decreased Cd bioavailability in soil resulting from SR practices. These findings establish multi-season total straw removal as a sustainable phyto-management strategy for Cd-polluted rice cultivation systems.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00128-025-04113-xDOI Listing

Publication Analysis

Top Keywords

straw removal
12
rice straw
12
consecutive seasons
8
straw removed
8
straw
7
rice
5
cadmium availability
4
availability soil-rice
4
soil-rice system
4
system receiving
4

Similar Publications

Cadmium (Cd) pollution in rice agroecosystems has become a pressing worldwide environmental challenge. Straw return leads to Cd re-entering the soil, yet the impact of straw removal (SR) on Cd mobility and bioavailability within this system remains unclear. We implemented a four-season field study to evaluate how different SR intensities (NSR: no rice straw was removed; HSR: half of the rice straw was removed; TSR: all the rice straw was removed) influence Cd availability in this system.

View Article and Find Full Text PDF

Water eutrophication has emerged as a pervasive ecological challenge worldwide. To realize the resource utilization of waste and nutrients, a novel rape straw-derived biochar-calcium alginate composite (M-CA-RBC) immobilized Pseudomonas sp. H6 was synthesized to simultaneously remove phosphate (PO) and ammonium (NH) from distillery wastewater.

View Article and Find Full Text PDF

Multifunctional polymers derived from waste biomass are under intense global investigation for wastewater remediation owing to their environmental advantages. Therefore, this study reports the synthesis of a novel polyamidoxime-co-polyethyleneimine multifunctional cellulose, which was used as an adsorbent for the removal of acidic dye pollutants. Morphological, structural, and surface studies were performed using several techniques.

View Article and Find Full Text PDF

Cotton stalk (CTS) and corn stover (CRS) were pretreated using solid alkali (NaOH or Ca(OH)) assisted ball milling (BM). The physicochemical properties of the pretreated materials and their high-solid enzymatic hydrolysis performance were systematically investigated. The interaction between alkali and straw was synergistically enhanced by mechanical force generated during BM, achieving effective lignin removal.

View Article and Find Full Text PDF

Addressing the issues of slow decomposition and low nutrient release efficiency associated with traditional straw returning, this study innovatively applied ultrasound-assisted centrifugal separation technology to prepare submicron/nano-straw particles and systematically conducted a multi-scale investigation from microscopic to macroscopic levels. The core finding reveals that when the particle size reaches the 1 μm threshold, ultrasonic cavitation vigorously disrupts the straw structure, leading to efficient lignin removal (77.45 %) and a significant reduction in cellulose crystallinity, thereby fundamentally enhancing the degradation rate.

View Article and Find Full Text PDF