98%
921
2 minutes
20
Floral fragrance is essential for the attraction of pollinators and responses to biotic and abiotic stresses. It also enhances the quality and economic value of plants. Phytohormones, acting as key signaling molecules, are crucial roles in regulating plant growth and development. However, the molecular mechanisms underlying the biosynthesis of fragrance-related volatiles and their crosstalk with other endogenous signals within plants remain largely unknown. Here, we identified a sesquiterpene synthase gene, CmEβFS, in chrysanthemum, which encodes a catalytic enzyme responsible for synthesizing the key fragrance-related compound (E)-β-farnesene. We demonstrated that CmEβFS is negatively regulated by CmWRKY1, thereby inhibiting (E)-β-farnesene biosynthesis. Furthermore, CmWRKY1 interacts with the salicylic acid (SA) receptor CmNPR3 to regulate SA-mediated CmEβFS transcription. Our findings reveal that SA regulates (E)-β-farnesene biosynthesis by controlling CmEβFS expression via the CmWRKY1-CmNPR3 module during floral development. These findings enhanced our understanding of the mechanisms underlying SA-mediated regulation of volatile organic compounds (VOCs) biosynthesis and provided insights into improving floral fragrance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12412252 | PMC |
http://dx.doi.org/10.1186/s43897-025-00174-y | DOI Listing |
Mol Hortic
September 2025
Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China.
Floral fragrance is essential for the attraction of pollinators and responses to biotic and abiotic stresses. It also enhances the quality and economic value of plants. Phytohormones, acting as key signaling molecules, are crucial roles in regulating plant growth and development.
View Article and Find Full Text PDFJ Food Sci
September 2025
Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China.
Liqueur koji-fermented foxtail millet beverages offer distinctive flavors and health benefits, but the interrelationships among flavor compounds, sensory properties, and antioxidant activity remain unelucidated. This study systematically mapped dynamic changes across a standardized 72 h fermentation using chromatographic, electronic sensory approaches, and antioxidant assays. Key results revealed glucose, lactic acid, and succinic acid as primary taste-active indicators through HPLC.
View Article and Find Full Text PDFFood Microbiol
January 2026
Department of Wine, Vine and Beverage Sciences, School of Food Science, University of West Attica, 28 Ag. Spyridonos St., Egaleo, 12243, Greece. Electronic address:
Zygosaccharomyces bailii is a non-conventional wine yeast, traditionally recognized for its spoilage potential in food and beverages. However, strain-level variability within this species presents an opportunity to identify efficient, non-spoilage strains with promising applications as wine starter cultures. The aim of this study was to investigate the interaction between indigenous strains of Saccharomyces cerevisiae and Z.
View Article and Find Full Text PDFMetabolites
August 2025
Jiangsu Key Laboratory for Conservation and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China.
: and are valuable evergreen trees recognized for their unique aromas and ecological significance, yet the organ-related distribution and functional implications of aroma-active volatiles remain insufficiently characterized. : In this study, we applied an integrated GC-MS-based volatile metabolomics approach combined with a relative odor activity value (rOAV) analysis to comprehensively profile and compare the volatile metabolite landscape in the seeds and leaves of both species. : In total, 1666 volatile compounds were putatively identified, of which 540 were inferred as key aroma-active contributors based on the rOAV analysis.
View Article and Find Full Text PDFFood Chem
August 2025
Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City/College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China; Chongqing Tea Technology and Inno
Leaf color, a vital phenotypic trait, influences the flavor quality of tea. This study investigated the flavor and metabolite profiles of hawk black tea (HBT) processed from leaves of different colors. Sensory evaluation revealed that purple-leaf HBT (PHBT) exhibited prominent floral-fruity notes, green-leaf HBT (GHBT) showed fresh camphoraceous characteristics, while mixed-leaf HBT (MHBT) demonstrated optimal flavor with the highest overall acceptability.
View Article and Find Full Text PDF