98%
921
2 minutes
20
Lithium-sulfur (Li-S) batteries have been hindered by the low active material utilization, sluggish kinetics and Li anode corrosion caused by the dissolution of Li polysulfides (LiPSs) intermediates. To solve these problems simultaneously, Fe-doped HTiO anchored on the reduced graphene oxide (rGO/HTiO-Fe) is designed via dopant selection and doping content optimization as a novel separator modifier. Tunable Fe-doping induces the controllable generation of oxygen vacancies (OVs), endowing rGO/HTiO-Fe with suitable Lewis acid character, which causes a sieving effect via the differentiated adsorption between OVs and various LiPSs. All the long-chain LiPSs are blocked, while partial LiS passes over the separator to react with the Li anode for forming robust SEI, which could ease the Li corrosion from LiPSs and suppress Li dendrite. Furthermore, the optimized electronic structure and the enhanced electronic conductivity from Fe-doping promote the catalytic effect for the LiPSs redox to accelerate the conversion of the blocked LiPSs. Consequently, with the synergistic effect between sieving effect and enhanced catalysis, rGO/HTiO-Fe modified separator provides Li-S battery remarkable cycling (fading rate: 0.035%@5 C during 1000 cycles), power, and shelving performances. This strategy, based on rational dopant selection and OVs regulation, offers a universal separator design for high-performance Li-S batteries toward industrialization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202508523 | DOI Listing |
Adv Mater
September 2025
School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150080, China.
The polysulfide shuttling and sluggish sulfur redox kinetics hinder the commercialization of lithium-sulfur (Li-S) batteries. Herein, the fabrication of phosphorus (P)-doped iron telluride (FeTe) nanoparticles with engineered Te vacancies anchored on nitrogen (N)-doped carbon (C) (P-FeTe@NC) is presented as a multifunctional sulfur host. Theoretical and experimental analyses show that Te vacancies create electron-deficient Fe sites, which chemically anchor polysulfides through enhanced Fe─S covalent interactions.
View Article and Find Full Text PDFACS Sustain Chem Eng
September 2025
Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, U.K.
Traditionally, binders such as poly-(vinylidene fluoride) (PVDF) have been used within lithium-sulfur (Li-S) batteries, but these present environmental and recyclability challenges and have little to no impact on the processes that drive degradation in the cell's chemistry. Ideally, a Li-S battery binder would contribute to the mitigation of the polysulfide shuttle effect and negate the impacts of positive electrode volume expansion while being compatible with aqueous ink preparation and low-energy, low-toxicity recycling processes. In this work, we demonstrate that fibroin, an economical and sustainable biological polymer with an abundance of functional groups, can effectively trap polysulfides while still offering the durability, cyclability, and ease of use offered by the current state-of-the-art binder (PVDF).
View Article and Find Full Text PDFJ Colloid Interface Sci
August 2025
Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, China. Electronic address:
The commercialization of lithium‑sulfur (LiS) batteries faces fundamental issues from polysulfide shuttling to inefficient redox kinetics, compounded by the absence of systematic methods for catalyst design. Herein, we present a machine learning (ML)-driven strategy to design MoS/MoO heterostructures anchored on nitrogen-doped hollow carbon shells (NCS) via gradient boosting decision trees modeling. The ML-guided optimization identifies critical synthesis parameters (e.
View Article and Find Full Text PDFLangmuir
September 2025
High Energy Density Batteries Research Laboratory, Department of Physics, Pondicherry University, Puducherry 605014, India.
Lithium-sulfur batteries have attracted significant attention recently as sulfur is one of the most abundant elements in the earth's crust, low-cost, has a non-toxic nature, multi-electron transfer property coupled with its remarkable theoretical specific capacity of 1672 mAh g and energy density of 2600 Wh kg. However, lithium-deficient sulfur cathodes associated with lithium metal anodes together to face challenges, such as significant volume expansion during cycling, dendrite formation, and polysulfide shuttling effect from the sulfur cathodes, leading to corrosion, all of which negatively impact the cycle lifespan of the battery. On the other hand, moving away from liquid to solid-state garnet-based solid electrolytes is highly aided for lithium-sulfur batteries because of their high ionic conductivity of 10 S cm stability with lithium metal, lithium-based alloys and moreover in mitigating the polysulfide issues.
View Article and Find Full Text PDFACS Nano
September 2025
Faculty of Materials Science and Energy Engineering, Shenzhen University of Advanced Technology, Shenzhen 518107, China.
The variable valence states of iodine(I) render Zn-I batteries an intriguing area of research. However, current Zn-I batteries are mostly based on I/I redox chemistry. Effective strategies for activating the high-voltage I/I redox couple in iodine-based cathode materials remain relatively scarce.
View Article and Find Full Text PDF