98%
921
2 minutes
20
The electrochemical Na storage properties of hard carbon prepared by direct annealing of peat are limited by its open pore structure. Here, we report a co-annealing strategy that repairs the structure within the confined mesopore space in peat, achieving a capacity of 242.5 mAh g at a current density of 30 mA g with an initial coulombic efficiency of 74.71%.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d5cc03709c | DOI Listing |
J Chromatogr A
September 2025
Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, Zhejiang, China. Electronic address:
Non-steroidal anti-inflammatory drugs (NSAIDs) residues pose a potential threat to aquatic ecosystems and food safety. In this work, novel imine bond/pyridine nitrogen-rich magnetic microporous organic networks (MMONs-Br and MMONs-I) were synthesized via a facile one-pot strategy using brominated and iodinated precursors for the detection of NSAIDs in fish. Brunauer-Emmett-Teller analysis revealed a striking 11-fold difference in specific surface areas between the two materials (MMONs-Br: 293.
View Article and Find Full Text PDFBiosens Bioelectron
September 2025
State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China. Electronic address:
Artificial cytoskeletons are constructed to study the structure and function of eukaryotic cells. Metal-organic frameworks (MOFs) provide a strong foundation for the construction of artificial cytoskeleton by encapsulating enzyme, yet challenges such as random enzyme distribution and poor catalytic efficiency, impede the development of artificial cytoskeleton technologies. Herein, a multilayer MOFs-based programmable artificial cytoskeleton was constructed through a heterogeneous interfacial growth method, utilizing hierarchical encapsulation of enzymes to facilitate tandem biocatalytic reactions.
View Article and Find Full Text PDFAnal Chim Acta
November 2025
College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, China. Electronic address:
Background: The separation of structural isomers is always a challenging task for liquid chromatography because of their similar physicochemical property. Research has found that materials with regular microporous structures exhibit excellent isomer separation performance. However, as the most easily available chromatographic material, silica stationary phases with regular and small mesopore structure have not yet been prepared, and it remains to be confirmed whether narrow pores in silica materials have the enhancing effect on shape selectivity in the separation of structural isomers.
View Article and Find Full Text PDFTalanta
September 2025
College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao Application Technology Innovation Center of Photoelectric Biosensing for Clinical Diagnosis and Treatment, Instrument
Rational optimization of the pore size and topology of porous nanocarriers is crucial for improving the loading amount of luminophore and enhancing electrochemiluminescence (ECL) performance. In this study, an equimolar linear ligand replacement strategy was employed to synthesize novel mesoporous metal-organic frameworks (MOFs) for encapsulating Ru(bpy) (Ru@Zr MOFs) under room temperature without an acid modulator. Ingenious ligand substitution allows precise control of pore size, enabling encapsulation at the single-molecule level within mesoporous cages.
View Article and Find Full Text PDFInt J Pharm
September 2025
Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, People's Republic of China; Engineering Research Center of Intelligent Theranostics Technology and Instruments, Ministry of Education, People's Republic of China. Electronic address:
Background: Ultrasound-assisted transdermal drug delivery, or sonophoresis, enhances skin permeability, offering a non-invasive alternative for drug administration. However, its clinical application remains limited because of an insufficient understanding of its underlying mechanisms and optimal parameters. This study investigates the factors influencing ultrasound-enhanced drug absorption and examines its biological effects on skin structures and HaCaT cells, providing a comprehensive analysis of its mechanisms.
View Article and Find Full Text PDF