98%
921
2 minutes
20
The wearable optoelectronic systems, often employed with miniaturized and portable photosensors, can be conformably integrated with the human body to promote the advancement of health monitoring and protection. However, developing advanced photosensors with a simple structure that can be sustainable with high sensitivity in different operation conditions, e.g., cross-medium amphibious (terrestrial/aquatic environments) photosensing to match the diverse and complex human activities remains limited. Here, we propose a self-powered photoelectrochemical-type photosensor composed of a hydrogel/InGaN nanorod heterostructure to mimic amphibious biophotosensory behavior. Strikingly, the ion-conductive quasi solid-state hydrogel enables the device to execute cross-medium photoresponse, maintaining consistent photoresponsive metrics under both terrestrial and submerged conditions. More importantly, by simply tailoring the bandgap of InGaN nanorods followed by a facile carbon-layer passivation strategy, we achieve high-selectivity harmful wavelength (280-420 nm) detection under sunlight and an impressive ultraviolet responsivity (130.7 mA/W) with fast response speed (<10 ms). A proof-of-concept demonstration of amphibious-type ultraviolet sensing system exhibits a stable operation in waterfront environments, achieving real-time monitoring and analysis of ultraviolet intensity on land and underwater across various weather conditions. This work provides a practical and reliable device platform for the development of multifunctional optoelectronic systems in the pursuit of wearable amphibious-type photosensors for complex environment monitoring.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.5c07003 | DOI Listing |
ACS Appl Mater Interfaces
September 2025
Division of Nano Life Science, Kanazawa University, Kakuma-machi, 920-1192 Kanazawa, Japan.
Atomic force microscopy (AFM) imaging of ionic liquid (IL) distribution in electric double-layer (EDL) devices has been actively explored to understand the origin of their excellent performance. However, this has been impeded by insufficient resolution or a poor understanding of the mechanisms of 3D IL imaging. Here, we overcome these difficulties using 3D scanning force microscopy (3D-SFM) with variable tip/sample bias voltages for visualizing 3D ,-diethyl--methyl--(2-methoxyethyl)ammonium bis(trifluoromethanesulfonyl)imide (DEME-TFSI) distributions on a Au electrode in EDL capacitors.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
State Key Laboratory of Advanced Materials for Intelligent Sensing and Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Institute of Molecular Plus, Department of Chemistry, Tianjin University, Tianjin 300072, China.
Incorporating boron atoms into organic macrocycles imparts unique chemical, electronic, and optical properties. The concept of making use of dative boron-nitrogen (B ← N) bonds for the construction of macrocycles has been proposed, but very few examples have been prepared with functional structures, much less pillar-like and other prismatic macrocycles, and their various functionalities have not been fully exploited. Here, we introduce a "functional molecular wall" synthetic protocol based on the self-assembly characteristics of B ← N dative bonds to construct highly symmetrical macrocycles, forming a quasi-pentagonal-shaped macrocycle (named [5]pyBN-) with a pillar-like structure.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
Shandong Key Laboratory of Advanced Chemical Energy Storage and Intelligent Safety, Advanced Technology Research Institute, Beijing Institute of Technology, Jinan, 250300, China.
Lithium-sulfur batteries have been regarded as a promising candidate for next-generation energy storage systems owing to their high energy density and low cost. Sulfurized polyacrylonitrile (SPAN) as a cathode material has received wide interest due to the solid-solid conversion mechanism, while the Li-SPAN cell performance has been limited by the notorious issue of lithium metal anode. Developing solid-state electrolytes for lithium-sulfur batteries with favorable electrode-electrolyte compatibility is urgently desired.
View Article and Find Full Text PDFNano Lett
September 2025
Department of Physics, The Ohio State University, Columbus, Ohio 43210, United States.
Here, we present an all-electrical readout mechanism for quasi-0D quantum states (0D-QS), such as point defects, adatoms, and molecules, that is modular and general, providing an approach that is amenable to scaling and integration with other solid-state quantum technologies. Our approach relies on the creation of high-quality tunnel junctions via the mechanical exfoliation and stacking of multilayer graphene (MLG) and hexagonal boron nitride (hBN) to encapsulate the target system in an MLG/hBN/0D-QS/hBN/MLG heterostructure. This structure allows for all-electronic spectroscopy and readout of candidate systems through a combination of coulomb and spin-blockade.
View Article and Find Full Text PDFACS Nano
September 2025
Instituto de Ciencia de Materiales de Barcelona. ICMAB-CSIC. Campus Universitario UAB, Bellaterra 08193, Spain.
In this work, we investigate how the crystallographic growth direction influences spin current transmission in antiferromagnetic (AF) NiO thin films. By manipulating epitaxial growth, we explored the spin transport characteristics in LaSrMnO/NiO/Pt heterostructures grown on top of (001)- and (111)-oriented SrTiO substrates, varying the NiO barrier thickness (t). Spin currents were generated via spin pumping (SP), and detection was done by the inverse spin Hall effect (ISHE).
View Article and Find Full Text PDF