98%
921
2 minutes
20
Atomic force microscopy (AFM) imaging of ionic liquid (IL) distribution in electric double-layer (EDL) devices has been actively explored to understand the origin of their excellent performance. However, this has been impeded by insufficient resolution or a poor understanding of the mechanisms of 3D IL imaging. Here, we overcome these difficulties using 3D scanning force microscopy (3D-SFM) with variable tip/sample bias voltages for visualizing 3D ,-diethyl--methyl--(2-methoxyethyl)ammonium bis(trifluoromethanesulfonyl)imide (DEME-TFSI) distributions on a Au electrode in EDL capacitors. Unlike previous reports, the multilayered vertical IL distribution and lateral molecular arrangements in the first adsorption layer are simultaneously visualized in one 3D image. This has allowed us to find the sample-bias-dependent changes in the molecular stability and thickness of the first IL adsorption layer, suggesting the significant bias dependence of the EDL capacitance. Such bias dependence is also confirmed by our molecular dynamics simulation and electrochemical impedance spectroscopy experiments, demonstrating the capability of 3D-SFM to provide molecular insights into the macroscopic device properties. Detailed comparisons between simulation and experiments also reveal that the 3D-SFM force contrasts mostly represent the distribution of anions having a higher molecular weight, yet the contrast is strongly enhanced by a positive tip bias. This is because the positively (or negatively) charged Au-coated tip is covered with a quasi-solid-state anion (or cation) layer, enhancing (or reducing) the electrostatic repulsion from the anions in the EDL. This counterintuitive finding should reinforce the theoretical basis for 3D IL imaging and help understand the molecular-scale origins of the EDL device performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.5c11718 | DOI Listing |
Nano Lett
September 2025
Department of Physics and Astronomy, University of Nebraska─Lincoln, Lincoln, Nebraska 68588, United States.
In this study, using a set of scanning probe microscopy techniques, we investigate the electronic properties of the domain walls in the layered ferroelectric semiconductor of the transition metal oxide dihalide family, NbOI. Although the uniaxial ferroelectricity of NbOI allows only 180° domain walls, the pristine 2D flakes, where polarization is aligned in-plane, typically exhibit a variety of as-grown domain patterns outlined by the electrically neutral and charged domain walls. The electrically biased probing tip can modify the as-grown domain structures.
View Article and Find Full Text PDFJ Virol
September 2025
Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan.
Double-stranded RNA (dsRNA), which induces an innate immune response against viral infections, is rarely detected in influenza A virus (IAV)-infected cells. Nevertheless, we previously reported that the influenza A viral ribonucleoprotein (vRNP) complex generates looped dsRNAs during RNA synthesis . This finding suggests that IAV possesses a specific mechanism for sequestering dsRNA within infected cells, thereby enabling viral evasion of the innate immune response.
View Article and Find Full Text PDFInt J Pharm X
December 2025
School of Pharmaceutical Sciences, Lovely Professional University, Phagwada, Punjab, India.
The study explored HSPiP and QbD-(quality by design) enabled optimized cubosomes for sustained drug release, improved permeation, and enhanced oral bioavailability. OCUB1 (the optimized product) was characterized for size, zeta potential (ZP), thermal analysis, and surface roughness. drug release and hemolysis studies were carried out using a dialysis membrane and rat erythrocytes (4 % suspension), respectively.
View Article and Find Full Text PDFACS Omega
September 2025
R&D Production Department in Pharmaceutical Industry, Faculty of Pharmacy, Inonu University, 44280 Malatya, Turkey.
Bacterial cellulose (BC) was produced in dried apricot extract medium (DAEM) by . The BC yield obtained from DAEM containing 0.5 g of glucose after 10 days of incubation at 30 °C was determined as 9.
View Article and Find Full Text PDFSmall Sci
September 2025
Department of Anesthesiology Weill Cornell Medicine 1300 York Avenue New York NY 10065 USA.
The solvent of membrane proteins is the membrane lipids in which they are embedded. Therefore, the nature of the lipids that surround membrane proteins impacts their dynamics and interactions. Unfortunately, how membrane proteins dynamically interact is difficult to study, and little is experimentally known how membrane proteins interplay in a membrane at the molecular scale.
View Article and Find Full Text PDF