In this work, we investigate how the crystallographic growth direction influences spin current transmission in antiferromagnetic (AF) NiO thin films. By manipulating epitaxial growth, we explored the spin transport characteristics in LaSrMnO/NiO/Pt heterostructures grown on top of (001)- and (111)-oriented SrTiO substrates, varying the NiO barrier thickness (t). Spin currents were generated via spin pumping (SP), and detection was done by the inverse spin Hall effect (ISHE).
View Article and Find Full Text PDFMetamaterials with engineered structures have been extensively investigated for their capability to manipulate optical, acoustic, or thermal waves. In particular, magnetic metamaterials with precise geometry, shape, size and arrangement of their elemental blocks may be used to concentrate, focus, or guide magnetic fields. In this work, we show the potential of using soft-magnetic permalloy (Py) metasurfaces to tailor the physical properties of other magnetic structures at the local scale.
View Article and Find Full Text PDFEnergy-efficient cryogenic memory systems play a critical role in a wide spectrum of applications focused on ultra-energy-efficient information and communication technologies, such as quantum computing or superconducting electronics. Neuromorphic systems, known for their superior energy efficiency, have emerged as a promising approach for in-memory computing. Specifically, strongly correlated oxides that exhibit Mott metal-insulator transitions through field-induced oxygen movement are of great interest for analog memory and neuromorphic computing.
View Article and Find Full Text PDFJ Am Chem Soc
February 2025
Heteroatom-doping has emerged as a transformative approach to producing high-performance catalysts, yet the current trial-and-error approach to optimize these materials remains ineffective. To enable the rational design of more efficient catalysts, models grounded in a deeper understanding of catalytic mechanisms are essential. Existing models, such as -band center theory, fall short in explaining the role of dopants, particularly when these dopants do not directly interact with reactants.
View Article and Find Full Text PDFCatalytic additives able to accelerate the lithium-sulfur redox reaction are a key component of sulfur cathodes in lithium-sulfur batteries (LSBs). Their design focuses on optimizing the charge distribution within the energy spectra, which involves refinement of the distribution and occupancy of the electronic density of states. Herein, beyond charge distribution, we explore the role of the electronic spin configuration on the polysulfide adsorption properties and catalytic activity of the additive.
View Article and Find Full Text PDFA novel nanocomposite consisting of FeO-loaded tin oxyhydroxy-chloride is demonstrated as an efficient adsorbent for the removal of hexavalent chromium in compliance to the new drinking water regulation. This study introduces a continuous-flow production of the nanocomposite through the separate synthesis of (i) 40 nm FeO nanoparticles and (ii) multilayered spherical arrangements of a tin hydroxy-chloride identified as abhurite, before the application of a wet-blending process. The homogeneous distribution of FeO nanoparticles on the abhurite's morphology, features nanocomposite with magnetic response whereas the 10 % loaded nanocomposite preserves a Cr(VI) uptake capacity of 7.
View Article and Find Full Text PDFBeyond optimizing electronic energy levels, the modulation of the electronic spin configuration is an effective strategy, often overlooked, to boost activity and selectivity in a range of catalytic reactions, including the oxygen evolution reaction (OER). This electronic spin modulation is frequently accomplished using external magnetic fields, which makes it impractical for real applications. Herein, spin modulation is achieved by engineering Ni/MnFeO heterojunctions, whose surface is reconstructed into NiOOH/MnFeOOH during the OER.
View Article and Find Full Text PDFThe catalytic activation of the Li-S reaction is fundamental to maximize the capacity and stability of Li-S batteries (LSBs). Current research on Li-S catalysts mainly focuses on optimizing the energy levels to promote adsorption and catalytic conversion, while frequently overlooking the electronic spin state influence on charge transfer and orbital interactions. Here, hollow NiS/NiSe heterostructures encapsulated in a nitrogen-doped carbon matrix (NiS/NiSe@NC) are synthesized and used as a catalytic additive in sulfur cathodes.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2024
The growth of epitaxial thin films from the Ruddlesden-Popper series of strontium iridates by magnetron sputtering is analyzed. It was found that, even using a non-stoichiometric target, the films formed under various conditions were consistently of the perovskite-like n = ∞ SrIrO phase, with no evidence of other RP series phases. A detailed inspection of the temperature-oxygen phase diagram underscored that kinetics mechanisms prevail over thermodynamics considerations.
View Article and Find Full Text PDFThe exploration of metal-insulator transitions to produce field-induced reversible resistive switching effects has been a longstanding pursuit in materials science. Although the resistive switching effect in strongly correlated oxides is often associated with the creation or annihilation of oxygen vacancies, the underlying mechanisms behind this phenomenon are complex and, in many cases, still not clear. This study focuses on the analysis of the superconducting performance of cuprate YBaCuO (YBCO) devices switched to different resistive states through gate voltage pulses.
View Article and Find Full Text PDFTin oxide nanoparticles optimized to capture low concentrations of hexavalent chromium from water were developed through a facile, scalable, and low-cost one-step solar vapor deposition methodology. Considering the preservation of high electron donation capacity as the key to support the reduction of mobile Cr(VI) into insoluble forms, the growth of SnO nanoparticles was favored by the co-evaporation of SnO with Fe powders at various mass ratios. Characterization techniques indicated that the percentage and the stability of SnO is proportional to the Fe content in the target with a requirement of at least 50% wt to inhibit the formation of a passive SnO surface layer.
View Article and Find Full Text PDFAn ABX spinel structure, with tetrahedral A and octahedral B sites, is a paradigmatic class of catalysts with several possible geometric configurations and numerous applications, including polysulfide conversion in metal-sulfur batteries. Nonetheless, the influence of the geometric configuration and composition on the mechanisms of catalysis and the precise manner in which spinel catalysts facilitate the conversion of polysulfides remain unknown. To enable controlled exposure of single active configurations, herein, Co and Co in CoO catalysts for sodium polysulfide conversion are in large part replaced by Fe and Fe, respectively, generating FeCoO and CoFeO.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2023
Spin injection and spin-charge conversion processes in all-oxide LaSrMnO/SrIrO (LSMO/SIO) heterostructures with different SIO layer thickness and interfacial features have been studied. Ferromagnetic resonance (FMR) technique has been used to generate pure spin currents by spin pumping (SP) in ferromagnetic (FM) half-metallic LSMO. The change of the resonance linewidth in bare LSMO layers and LSMO/SIO heterostructures suggests a successful spin injection into the SIO layers.
View Article and Find Full Text PDFThe electrochemical oxygen evolution reaction (OER) plays a fundamental role in several energy technologies, which performance and cost-effectiveness are in large part related to the used OER electrocatalyst. Herein, we detail the synthesis of cobalt-iron oxide nanosheets containing controlled amounts of well-anchored SO anionic groups (CoFeO-SO). We use a cobalt-based zeolitic imidazolate framework (ZIF-67) as the structural template and a cobalt source and Mohr's salt ((NH)Fe(SO)·6HO) as the source of iron and sulfate.
View Article and Find Full Text PDF2D materials offer the ability to expose their electronic structure to manipulations by a proximity effect. This could be harnessed to craft properties of 2D interfaces and van der Waals heterostructures in devices and quantum materials. We explore the possibility to create an artificial spin polarized electrode from graphene through proximity interaction with a ferromagnetic insulator to be used in a magnetic tunnel junction (MTJ).
View Article and Find Full Text PDFIn this work, we report a systematic study of the influence of film thickness on the structural and magnetic properties of epitaxial thin films of PrNiMnO (PNMO) double perovskite grown on top of two different (001)-SrTiO and (001)-LaAlO substrates by RF magnetron sputtering. A strong dependence of the structural and magnetic properties on the film thickness is found. The ferromagnetic transition temperature () and saturation magnetization (s) are found to decrease when reducing the film thickness.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2022
Lithium-sulfur batteries (LSBs) are still limited by the shuttle of lithium polysulfides (LiPS) and the slow Li-S reaction. Herein, we demonstrate that when using cobalt sulfide as a catalytic additive, an external magnetic field generated by a permanent magnet can significantly improve the LiPS adsorption ability and the Li-S reaction kinetics. More specifically, the results show both experimentally and theoretically how an electron spin polarization of Co ions reduces electron repulsion and enhances the degree of orbital hybridization, thus resulting in LSBs with unprecedented performance and stability.
View Article and Find Full Text PDFEpitaxial thin films of PrNiMnO (PNMO) double perovskite were grown on (001)-oriented SrTiO substrates by RF magnetron sputtering. The influence of the growth parameters (oxygen pressure, substrate temperature, and annealing treatments) on the structural, magnetic and transport properties, and stoichiometry of the films was thoroughly investigated. It is found that high-quality epitaxial, insulating, and ferromagnetic PNMO thin films can only be obtained in a narrow deposition parameter window.
View Article and Find Full Text PDFSpin pumping (SP) is a well-established method to generate pure spin currents allowing efficient spin injection into metals and semiconductors avoiding the problem of impedance mismatch. However, to disentangle pure spin currents from parasitic effects due to spin rectification effects (SRE) is a difficult task that is seriously hampering further developments. Here we propose a simple method that allows suppressing SRE contribution to inverse spin Hall effect (ISHE) voltage signal avoiding long and tedious angle-dependent measurements.
View Article and Find Full Text PDFNanomaterials (Basel)
July 2021
A magnetic nanocomposite, consisting of FeO nanoparticles embedded into a Mg/Al layered double hydroxide (LDH) matrix, was developed for cancer multimodal therapy, based on the combination of local magnetic hyperthermia and thermally induced drug delivery. The synthesis procedure involves the sequential hydrolysis of iron salts (Fe, Fe) and Mg/Al nitrates in a carbonate-rich mild alkaline environment followed by the loading of 5-fluorouracil, an anionic anticancer drug, in the interlayer LDH space. Magnetite nanoparticles with a diameter around 30 nm, dispersed in water, constitute the hyperthermia-active phase able to generate a specific loss of power of around 500 W/g-Fe in an alternating current (AC) magnetic field of 24 kA/m and 300 kHz as determined by AC magnetometry and calorimetric measurements.
View Article and Find Full Text PDFNanomaterials (Basel)
March 2021
The control of the spontaneous formation of nanostructures at the surface of thin films is of strong interest in many different fields, from catalysts to microelectronics, because surface and interfacial properties may be substantially enhanced. Here, we analyze the formation of nickel oxide nanocuboids on top of LaNiMnO double perovskite ferromagnetic thin films, epitaxially grown on SrTiO (001) substrates by radio-frequency (RF) magnetron sputtering. We show that, by annealing the films at high temperature under high oxygen partial pressure, the spontaneous segregation of nanocuboids is enhanced.
View Article and Find Full Text PDFKnowing the interactions controlling aggregation processes in magnetic nanoparticles is of strong interest in preventing or promoting nanoparticles' aggregation at wish for different applications. Dipolar magnetic interactions, proportional to the particle volume, are identified as the key driving force behind the formation of macroscopic aggregates for particle sizes above about 20 nm. However, aggregates' shape and size are also strongly influenced by topological ordering.
View Article and Find Full Text PDFThe development of a novel adsorbent based on Sn(II) oxy-hydroxide nanoparticles and the optimization of main synthesis parameters was examined for the efficient removal of hexavalent chromium at low residual concentration levels. The aqueous hydrolysis of Sn(II) salts in a continuous-flow process was evaluated as an effective method to synthesize an appropriate material able to operate both as an electron donor for Cr(VI) reduction, and provide a suitable crystal structure that favors strong complexation with the formed Cr(III) species. Experimental results revealed that the main hydrolysis parameters, such as pH value and tin origin/source, can be used to determine the chemical formula of the produced materials and thereby, eventually improve their uptake capacity for Cr(VI).
View Article and Find Full Text PDFThe fabrication procedure of hollow iron oxide nanoparticles with a large surface to volume ratio by a single-step gas condensation process at ambient temperature is presented. Fe clusters formed during the sputtering process are progressively transformed into hollow cuboids with oxide shells by the Kirkendall mechanism at the expense of oxygen captured inside the deposition chamber. TEM and Raman spectroscopy techniques point to magnetite as the main component of the nanocuboids; however, the magnetic behavior exhibited by the samples suggests the presence of FeO as well.
View Article and Find Full Text PDFLattice-mismatched epitaxial films of La0.7Sr0.3MnO3 (LSMO) on LaAlO3 (001) substrates develop a crossed pattern of misfit dislocations above a critical thickness of 2.
View Article and Find Full Text PDF