Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Chemodynamic therapy and sonodynamic therapy are two promising tumour therapeutic strategies. However, lack of highly effective sonosensitizers and control over chemodynamic therapy limit their application. Here we synthesize silver-doped zinc selenide quantum dots with atomically dispersed superficial Fe and show that they act as efficient sonosensitizers, catalysers and immunoreagents. Surface modification with an in situ self-assembly peptide drives accumulation in tumours. Superficial Fe remains stable and converts to Fe only under ultrasonic processing, reverting to Fe upon ultrasound cessation. Under ultrasound stimulation, superficial Fe undergoes valence change with concomitant amelioration of the hypoxic tumour microenvironment and production of sonodynamic therapy-beneficial hydroxyl radicals. Furthermore, silver doping suppressed nonradiative recombination of excitons, leading to improved production of singlet oxygen. Meanwhile, selenium promotes robust systemic immune responses for the inhibition of tumour metastases. This nano-platform allows control of valence switching of atomically dispersed catalysts, representing an effective tool for chemodynamic/sonodynamic/immunotherapy.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41565-025-01943-yDOI Listing

Publication Analysis

Top Keywords

quantum dots
8
chemodynamic therapy
8
atomically dispersed
8
iron-silver-modified quantum
4
dots efficient
4
efficient catalysts
4
catalysts anti-cancer
4
anti-cancer multitherapy
4
multitherapy controlled
4
controlled ultrasound-induced
4

Similar Publications

A machine learning-designed "supramolecular armor" imparts exceptional stability to perovskite quantum dots. A guanidinium crosslinker reinforces a β-cyclodextrin layer, creating a robust yet permeable interface that enables direct contact sensing in challenging aqueous environments.

View Article and Find Full Text PDF

Multifunctional Photoactive Janus Nanofibrous Membranes for Unidirectional Water Transport and Remediation of Airborne Pathogens and Pollutants.

ACS Nano

September 2025

State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing 210009, China.

Airborne pathogens and pollution control typically necessitate multiple membranes, each specializing in efficient aerosol filtration, moisture regulation, or antimicrobial protection. Integrating all these functions into a single membrane is highly advantageous but remains inherently challenging due to material incompatibility and inevitable performance trade-offs. Here, we present a photoactive Janus nanofibrous membrane for highly efficient air purification, engineered via sequential electrospinning.

View Article and Find Full Text PDF

Nitrosamines are genotoxic, mutagenic impurities and are widely encountered in the global landscape of the pharmaceutical industry. There is a need for rapid detection of nitrosamines in a pharmaceutical product. Here, we report the synthesis of carbon quantum dots (CQDs) using a readily available carbon precursor.

View Article and Find Full Text PDF

The formation of heterostructure interfaces from quantum dots (or nanocrystals) and lower-dimensional (2D or quasi-2D) materials enables interfacial and optoelectronic property tuning. However, this strategy has not been sufficiently characterized, for example, the application of cesium halide nanocrystals to quasi-2D perovskite structures is underexplored, and the mechanisms of the resulting structural modifications and specific nanocrystal roles are not fully understood. Herein, the effects of postsynthetically surface-modifying quasi-2D perovskite films with CsX ( = Cl, Br, I) nanocrystals are examined to bridge this gap.

View Article and Find Full Text PDF

Infrared photodetectors are crucial for autonomous driving, providing reliable object detection under challenging lighting conditions. However, conventional silicon-based devices are limited in their responsivity beyond 1100 nm. Here, a scallop-structured silicon photodetector integrated with tin-substituted perovskite quantum dots (PQDs) that effectively extends infrared detection is demonstrated.

View Article and Find Full Text PDF