Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The unconventional charge density wave (CDW) order in layered kagome lattice superconductors AVSb (A = K, Cs or Rb) triggers the emergence of novel quantum states such as time-reversal symmetry breaking and electronic liquid crystal states. However, atomic-scale manipulation and control of such phases remains elusive. Here we observe the emergent superconductivity and a primary pair density wave at the 2 × 2 Cs reconstructed surface of CsVSb by means of low-temperature scanning tunnelling microscopy/spectroscopy paired with density functional theory calculations. This quasi-two-dimensional kagome superconducting state with a critical temperature of ~5.4 K is intertwined with the bulk CDW order and exhibits a unique vortex core spectrum and a 4 × 4 pair density wave modulation of the superconducting gap. The emergent phenomena happen at a π-phase-shift dislocation in the periodicity of the CDW along the stacking direction if the 2 × 2 Cs superstructures are out of phase with the bulk CDW. Furthermore, we switched on and off the quasi-two-dimensional superconductivity through tip-assisted atomic manipulation of the 2 × 2 Cs superstructure. Thus, control of the surface reconstruction permits the creation, manipulation and control of quantum many-body states at antiphase boundaries in kagome lattice superconductors and, potentially, in other correlated materials.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41565-025-01940-1DOI Listing

Publication Analysis

Top Keywords

density wave
16
pair density
12
atomic manipulation
8
cdw order
8
kagome lattice
8
lattice superconductors
8
manipulation control
8
bulk cdw
8
density
5
manipulation emergent
4

Similar Publications

Reversible Manipulations of Triangular-Shaped Mirror Twin Boundary Loops in Ultrathin NiTe.

Nano Lett

September 2025

School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China.

High-density mirror twin boundaries (MTBs) embedded in two-dimensional (2D) transition metal dichalcogenides (TMDCs) have emerged as fascinating platforms for exploring charge density wave and Tomonaga-Luttinger liquid-related issues. However, the reversible manipulation of high-density MTBs in 2D TMDCs remains challenging. Herein, we report the first fabrication of high-density MTB loops in ultrathin 1T-NiTe on the SrTiO(001) substrate, by postannealing as-grown 1T-NiTe under Te-deficient conditions.

View Article and Find Full Text PDF

Objectives: To evaluate the predictive role of carotid stiffening, quantified using ultrafast pulse wave velocity (ufPWV), for assessing cardiovascular risk in young populations with no or elevated cardiovascular risk factors (CVRFs).

Materials And Methods: This study enrolled 180 young, apparently healthy individuals who underwent ufPWV measurements. They were classified into three groups: the CVRF-free group (n = 60), comprising current non-smokers with untreated blood pressure < 140/90 mmHg, fasting blood glucose (FBG) < 7.

View Article and Find Full Text PDF

Data-driven analysis of anomalous transport and three-wave-coupling effects in an  plasma.

J Elect Propuls

September 2025

Department of Aerospace Engineering, Universidad Carlos III de Madrid, Leganés, Spain.

The collisionless cross-field electron transport in an plasma configuration, representative of a Hall thruster, is studied using bispectral analysis on the data of a fully-kinetic simulation. The nonlinear, in-phase interaction of the oscillations of the azimuthal electric field and the electron density, both tied to the fundamental electron cyclotron drift instability (ECDI) mode, is found to be the main driver of electron transport. Higher-wavenumber ECDI modes do not drive anomalous transport directly; however, they are nonlinearly coupled with each other and with the fundamental ECDI mode.

View Article and Find Full Text PDF

Visualizing Electronic Vibrations on the Wave Function Tiles of the Low-Lying Singlet Excited States of Benzene.

J Chem Theory Comput

September 2025

International Center for Quantum and Molecular Structures, Faculty of Physics, Shanghai University, Shanghai 200444, China.

The representation of the electronic structure of benzene is important for understanding the properties of planar and monocyclic organic carbon compounds. Resonant Kekulé and conjugated structures based on localized and delocalized electronic theories, respectively, can be used to depict the ground state of benzene; however, depictions of its electrons vibrating in the excited states remain to be clarified. This paper presents a novel algorithm for exploring the three lowest lying vertically singlet excited states of benzene, focusing on the electronic excitations between occupied π and unoccupied π* orbitals.

View Article and Find Full Text PDF

A CuFeO/NiCo-LDH heterojunction electrochemical sensor (LDH: layered double hydroxide) was developed for the sensitive detection of tetracycline (TC). The sensor was constructed by integrating ZIF-67-derived nanocage NiCo-LDH on nickel foam with CuFeO, forming a p-n heterojunction that enhanced electron transfer and TC adsorption. The sensor exhibited bilinear detection ranges (0.

View Article and Find Full Text PDF