Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The representation of the electronic structure of benzene is important for understanding the properties of planar and monocyclic organic carbon compounds. Resonant Kekulé and conjugated structures based on localized and delocalized electronic theories, respectively, can be used to depict the ground state of benzene; however, depictions of its electrons vibrating in the excited states remain to be clarified. This paper presents a novel algorithm for exploring the three lowest lying vertically singlet excited states of benzene, focusing on the electronic excitations between occupied π and unoccupied π* orbitals. We show that electronic vibrations between neighboring carbon nuclei on the wave function tile of benzene undergo excitation in the π → π* transition. Furthermore, we reveal that electronic vibrations from the ground state can explain the optical dark or bright properties of the relevant excited states, as well as transition dipole moments (TDMs) calculated from the centroid of electron densities. Moreover, our method shows the potential intramolecular change of the molecular structures in the bright excited states. This study provides new insights into the singlet excited states of benzene and validates the algorithm as a useful tool for introducing the high-dimensional wave function to the general chemical community.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jctc.5c01058 | DOI Listing |