Ice affinity purification system for recombinant proteins using a DUF3494 ice-binding protein.

Int J Biol Macromol

Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea; Department of Polar Sciences, University of Science and Technology, Incheon 21990, Republic of Korea. Electronic address:

Published: June 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Protein purification is essential for the isolation of specific proteins from mixtures. Conventional affinity tags have advanced recombinant protein purification. However, their reliance on costly resins and complex procedures often limits scalability and affordability. In this study, we identified three ice-binding domains (CoIBD1, CoIBD2, and CoIBD3) in Candidatus Cryosericum odellii SMC5 to evaluate their potential as protein purification tags. These domains exhibited hyperactive ice-binding properties, including high thermal hysteresis and ice recrystallization inhibition activities; additionally, they bound to multiple ice planes, enabling efficient attachment to ice surfaces. Through sequence and structural analyses, we engineered an enhanced variant that retained these ice-binding traits while achieving improved thermal and chemical stability: eCoIBD1. We then used eCoIBD1 as a fusion tag to develop the Ice Affinity Purification (IAP) system and evaluated its performance with GFP as a model protein. The IAP system achieved 87 % purity after two purification rounds, recovering 29 % of the initial protein from the crude extract. Consistent performance was observed in the presence of additives such as dithiothreitol and glycerol. The IAP system provides a cost-effective, environmentally friendly alternative to traditional methods by leveraging ice as a renewable binding medium, thereby eliminating the need for expensive resins or regeneration steps.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2025.144378DOI Listing

Publication Analysis

Top Keywords

protein purification
12
iap system
12
ice affinity
8
affinity purification
8
ice
6
purification
6
protein
6
system
4
purification system
4
system recombinant
4

Similar Publications

The esterase gene encoding EstJN1 of Clostridium butyricum, which was isolated from the pit cellar of Chinese liquor facility, was expressed. EstJN1 was identified as a novel GDSL esterase belonging to family II. The enzyme demonstrated a marked substrate preference for p-nitrophenyl butyrate, with optimal activity at a temperature of 40 ℃ and a pH of 7.

View Article and Find Full Text PDF

Preparation and characterization of a Llama VHH-hFc chimeric antibody recognizing conserved neutralization epitope of H5N1 hemagglutinin with high affinity.

Arch Microbiol

September 2025

Department of Infectious Disease, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhizaoju Road, Huangpu District, Shanghai, 200011, China.

Highly pathogenic avian influenza (HPAI) H5N1 virus poses a continuing global public health threat due to its outbreaks in poultry farms and zoonotic transmission from birds to humans. In the quest of effective therapeutics against H5N1 infection, antibodies with broad neutralizing activity have attracted significant attention. In this study, we employed a phage display technique to select and identify VHH antibodies with specific neutralizing activity against H5N1 hemagglutinin (HA) from an immune llama-derived antibody library.

View Article and Find Full Text PDF

Cystofilobasidium infirmominiatum, biotechnologically significant yeast, is increasingly garnering attention due to its superior ability to produce valuable carotenoids and lipids. Nonetheless, until now, the reference genome that governs the biosynthesis of carotenoids and lipids in C. infirmominiatum remains unreported.

View Article and Find Full Text PDF

Introduction: leaves (FSL), a traditional Chinese ethnomedicinal herbal material used to prepare health-promoting infusions and pharmacologically noted for their robust anti-inflammatory, antioxidant, and broad-spectrum antiviral activities, nevertheless have an as-yet-uncharacterized molecular mechanism of action against human adenovirus (HAdV).

Methods: Ultra-high-performance liquid chromatography coupled with Q-Exactive Orbitrap mass spectrometry (UHPLC-Q-Exactive-Orbitrap/MS) was employed to identification of FSL components. Publicly available GEO datasets were mined to identify HAdV-associated differentially expressed genes (DEGs).

View Article and Find Full Text PDF

Integrated CRISPR-Cas12a and RAA one-pot visual strategy for the rapid identification of subspecies .

Front Cell Infect Microbiol

September 2025

State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.

Strangles, a highly contagious disease caused by subspecies (), significantly impacts horse populations worldwide, with Iceland as the only exception. This disease poses serious threats to equine health and results in considerable economic losses. Consequently, the accurate, sensitive, and rapid detection of from clinical samples is essential for early warning and effective disease management.

View Article and Find Full Text PDF