98%
921
2 minutes
20
Cystofilobasidium infirmominiatum, biotechnologically significant yeast, is increasingly garnering attention due to its superior ability to produce valuable carotenoids and lipids. Nonetheless, until now, the reference genome that governs the biosynthesis of carotenoids and lipids in C. infirmominiatum remains unreported. Here, the first genome assembly of C. infirmominiatum was performed through integrating Oxford Nanopore and Illumina NovaSeq techniques. The assembled genome is 27.61 Mb in size, comprising 35 scaffolds, with a N50 length of 1,144,974 bp and a GC content of 68.21%. It was predicted to encompass 10,719 protein-coding genes, with functional annotation conducted on 8,045 utilizing the NR database. Moreover, C. infirmominiatum was capable of synthesizing at least 3 carotenoids, 839 Lipids, 1,876 volatile organic compounds, and 540 other metabolites, as revealed by LC/GC-MS-based metabolomic profiling. Integrative multi-omics analysis identified key carotenogenic and lipogenic genes, as well as their related metabolic intermediates. The findings presented herein significantly improve our comprehension of the biosynthetic mechanisms of carotenoids and lipids in C. infirmominiatum. It furnishes a valuable genomic and metabolomic framework that facilitates fundamental molecular biology and comparative genomics studies, thereby broadening our insights into the genetic features and evolutionary dynamics of this species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00203-025-04456-3 | DOI Listing |
Physiol Plant
September 2025
Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan.
Epiphytic orchids have evolved specialized adaptive strategies, such as aerial roots with water-absorbing velamen tissues, to cope with water-scarce and nutrient-deficient habitats. Our previous study revealed that the aerial roots of the epiphytic orchid Phalaenopsis aphrodite lack a gravitropic response, raising the possibility that alternative tropic mechanisms may contribute to their adaptation. In this study, we examined the effects of light and moisture on aerial root growth in P.
View Article and Find Full Text PDFPlant J
September 2025
Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea.
Salt stress impairs photosynthetic efficiency and consequently reduces the growth, development, and grain yield of crop plants. The formation of hydrophobic barriers in the root endodermis, including the suberin lamellae and Casparian strips, is a key adaptive strategy for salt stress tolerance. In this study, we identified the role of the rice NAC transcription factor, ONAC005, in salt stress tolerance.
View Article and Find Full Text PDFPlant J
September 2025
Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK.
Plastoglobuli (PG) are plant lipoprotein compartments, present in plastid organelles. They are involved in the formation and/or storage of lipophilic metabolites. FIBRILLINs (FBNs) are one of the main PG-associated proteins and are particularly abundant in carotenoid-enriched chromoplasts found in ripe fruits and flowers.
View Article and Find Full Text PDFFood Res Int
November 2025
Department of Animal Science, Iowa State University, Ames, IA 50011, United States. Electronic address:
Lutein and omega-3 fatty acids, particularly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), offer significant health benefits, especially when consumed together. However, their incorporation in food is often low due to their instability during processing and storage. Meat products play an essential role in human nutrition and are generally deficient in lutein and omega-3 fatty acids.
View Article and Find Full Text PDFFood Res Int
November 2025
Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University,
Recently, the regulatory effect of natural antioxidants on oleogels has attracted the attention of scholars. Whether natural antioxidants with different structures can co-gel with gelators remains unclear. In this study, the impact of water-soluble (dihydroquercetin and epicatechin) and fat-soluble (lycopene and L-ascorbate palmitate) antioxidants on the physicochemical properties of diacylglycerol oleogels was investigated.
View Article and Find Full Text PDF