miR-125b-5p sensitizes colorectal cancer to anti-PD-L1 therapy by decreasing TNFR2 expression on tumor cells.

J Leukoc Biol

Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, N22-Research Building, Avenida da Universidade, University of Macau, Taipa, Macau SAR, China.

Published: June 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The microRNA miR-125b-5p, recognized as a tumor suppressor, has demonstrated the ability to curb the proliferation of various types of cancer cells. Our latest research has revealed that miR-125b-5p also impedes the proliferation and functionality of CD4 + Foxp3+ regulatory T cells by reducing the expression of tumor necrosis factor receptor 2 (TNFR2) on regulatory T cells. To explore the potential of miR-125b-5p to suppress tumor growth by targeting TNFR2 on cancer cells, we overexpressed the levels of miR-125b-5p in mouse colorectal cancer cells. Our findings showed that the overexpression of miR-125b-5p significantly suppressed the proliferation, migration, and invasiveness of TNFR2-expressing cancer cells. This was further supported by in vivo observations, in which we noted a regression of 20% to 30% of tumors in immunocompetent mice that had been treated with miR-125b-5p-overexpressing cells. Remarkably, when combined with anti-PD-L1 therapy, the regression rate increased dramatically, with over 85% of mice showing a 2- to 3-fold enhancement in tumor regression. This synergistic effect was attributed to the miR-125b-5p-mediated increase in cytotoxic CD8+ T cells. In conclusion, our study suggests that miR-125b-5p, by inhibiting TNFR2 expression in colorectal cancer cells, can enhance the effectiveness of anti-PD-L1 immunotherapy. This is achieved by modulating anti-tumor immune responses. The potential of miR-125b-5p to boost the efficacy of immunotherapies in clinical settings is a promising avenue for future therapeutic development.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jleuko/qiaf059DOI Listing

Publication Analysis

Top Keywords

cancer cells
20
colorectal cancer
12
cells
10
mir-125b-5p
8
anti-pd-l1 therapy
8
tnfr2 expression
8
expression tumor
8
regulatory cells
8
potential mir-125b-5p
8
cancer
6

Similar Publications

Berberine (BBR) is an isoquinoline alkaloid with a variety of biological activities, including anti-microbial and anti-tumoral activities. However, the cellular targets of BBR and the roles of BBR in the radiosensitivity of breast cancer cells are not well defined. In this study, we investigated the effects of BBR on the radiosensitivity of BT549 triple-negative breast cancer cells.

View Article and Find Full Text PDF

Ferroptosis, a controlled cell death influenced by iron-dependent lipid peroxidation, presents potential therapeutic targets for cancer treatment due to its unique molecular pathways and potential drug resistance. Natural compounds, such as polyphenols, flavonoids, terpenoids and alkaloids, can influence ferroptosis via important signalling pathways, such as Nrf2/Keap1, p53, and GPX4. These are promising for combinational therapy due to their ability to cause ferroptotic death in cancer cells, exhibit tumour-specific selectivity and reduce systemic toxicity.

View Article and Find Full Text PDF

Single-Cell RNA Sequencing Reveals Potential Mechanism of RUNX3 Reshaping Tumor Microenvironment in Non-small-cell Lung Cancer.

Ann Surg Oncol

September 2025

Department of Thoracic Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China.

Background: RUNX3 acts as a tumor suppressor gene in non-small-cell lung cancer (NSCLC), yet its specific biological mechanism is still unclear. This study aimed to uncover tumor microenvironment (TME) changes in NSCLC with varying RUNX3 expression statuses through single-cell RNA sequencing.

Patients And Methods: In total, seven patients with NSCLC with detailed pathological data were involved, with three both paracancerous and cancerous tissue samples.

View Article and Find Full Text PDF

Background: Hyperthermia (HT), while a cancer treatment approach, isn't always effective alone. Therefore, identifying hyperthermia enhancers is crucial. We demonstrated that Mito-TEMPO ([2-[(1-Hydroxy-2,2,6,6-tetramethylpiperidin-4-yl) amino]-2-oxoethyl]-triphenylphosphanium, MT) acts as a potent thermosensitizer, promoting cell death in human cervical cancer (HeLa) cells.

View Article and Find Full Text PDF

Subcellular distribution-based reference-free cancer cell discrimination with a novel AIE cationic probe.

Anal Chim Acta

November 2025

College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China. Electronic address:

Background: The development of specific fluorescent probes for cancer cell discrimination holds significant promise for advancing cancer diagnostics. Conventionally, these probes operate by translating differences in biomarkers or microenvironmental factors into variations in whole-cell fluorescence intensity. However, this dominant, intensity-based strategy is highly susceptible to extraneous fluctuations arising from probe concentration, illumination instability and complex intracellular environment.

View Article and Find Full Text PDF