Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The polyphagous insect pest, Spodoptera litura displays insecticide resistance that requires new control tactics. In this context, inorganic silica nanoparticles (SiNPs) and mesoporous silica nanoparticles (MSNPs) were studied for their insecticidal activity and their effects on the plant defense responses. The synthesized silica (SiNPs,160 nm size) and mesoporous silica (MSNPs,100 nm size) nanoparticles showed high insecticidal effect of against S. litura larvae with 73.0 and 80.0 % mortalities, respectively at low nanoparticles concentration (1 μg). Administration of NPs by feeding enhanced the larval gut uptake and caused a significant ∼14.9- to 12.7-fold reduction in lactate dehydrogenase activity for SiNPs and MSNPs, respectively. Efficient uptake of fluorescent NPs was illustrated in columnar larval gut cells. Feeding of SiNPs and MSNPs led to a significant reduction in larval weight (2.9- and 3.4-fold, respectively) due to their antifeedant effect which was positively correlated to larval mortalities. Both NPs exhibited negligible cytotoxicity in vitro. Furthermore, application of rhodamine B fluorescence-tagged NPs on soyabean leaves showed NPs presence on the leaf surfaces and were not internalized by the leaf. Moreover, the electromechanical plant responses to NPs application displayed increased localized signal durations (>2-fold). Additionally, SiNPs and MSNPs treatments significantly upregulated the 12-oxophytodienoate reductase plant jasmonic acid defense pathway gene expression (2.7- and 1.4-fold, respectively) that led to enhanced jasmonic acid contents. Application of SiNPs and MSNPs at low concentrations achieved insecticidal effect against S. litura and enhanced the plant defense responses against pest. Silica nanoparticles have potential in safe and effective management of S. litura.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pestbp.2025.106389DOI Listing

Publication Analysis

Top Keywords

silica nanoparticles
16
sinps msnps
16
mesoporous silica
12
plant defense
12
defense responses
12
insecticidal litura
8
larval gut
8
jasmonic acid
8
silica
7
nanoparticles
6

Similar Publications

SiO NP promotes allergic gastritis induced by degranulation of mouse MC9 cell through AQP4-mediated impairment of SIRT3-TFAM deacetylation and mitochondrial autophagy.

J Hazard Mater

September 2025

College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR C

Silicon dioxide nanoparticles (SiO NPs) are a novel material with a wide range of applications whose cumulative effects in the body pose certain health risks. The types of gastric injuries caused by different-sized SiO NPs and their mechanisms, however, remain unclear. Based on this, we established a mouse subchronic exposure model (10 mg/kg/d, 21 consecutive days of tube-feeding) with different SiO NP sizes (50, 300, and 1000 nm) in conjunction with in vitro MC9 and BMMCs models (160 μg/mL exposure for 24 h) to explore the gastric injury mechanisms.

View Article and Find Full Text PDF

Zeolitic imidazolate framework-8 nanoparticles: A promising nano-antimicrobial agent for sustainable management of bacterial leaf streak in rice.

Pestic Biochem Physiol

November 2025

State Key Laboratory of Agricultural and Forestry Biosecurity & Key Lab of Biopesticide and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China. Electronic address:

Rice bacterial leaf streak (BLS) caused by Xanthomonas oryzae pv. oryzicola (Xoc) significantly reduces rice yield and quality. Traditional chemical control methods often have limited efficacy and raise environmental concerns, highlighting the need for safer and more effective alternatives.

View Article and Find Full Text PDF

Glutathione-responsive and mitochondria targeting enhanced photodynamic therapy and cascade-triggered carbon monoxide release for all-in-one tumor therapy.

J Colloid Interface Sci

September 2025

School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China; Henan International Joint Laboratory of Smart Molecules and Identification and Diagnostic Functions, Henan Normal University, Xinxiang, Henan 453007, China. Electronic address:

Carbon monoxide (CO) has demonstrated significant potential in tumor therapy. However, the uncontrolled release of CO and single-modality therapy often fail to achieve the desired therapeutic outcomes. To address the above deficiencies, mesoporous silica nanoparticles containing tetrasulfide bonds (TMSNs) were constructed as intelligent nanocarriers to co-deliver a mitochondria-targeting photosensitizer (Au-TPP) and a photodynamically activated CO-releasing molecule (FeCO), enabling the synergistic combination of photodynamic therapy (PDT) and CO therapy.

View Article and Find Full Text PDF

Label-free immunoassay based on chemiluminescence-functionalized magnetic mesoporous nanoparticles for rapid detection of neuron-specific enolase.

Mikrochim Acta

September 2025

The Third Affiliated Hospital of Anhui Medical University, The First People's Hospital of Hefei, Binhu Hospital of Hefei, Hefei, 230061, P. R. China.

Lung cancer, as one of the cancers with the highest morbidity and mortality rates in the world, requires accurate detection of its vital serum marker, neuron-specific enolase (NSE), which is a key challenge for early detection of lung cancer. However, traditional chemiluminescence immunoassay (CLIA) methods rely on labeled antibodies (Abs) and suffer from complex operations and high costs. In this work, a label-free CLIA based on CL-functionalized mesoporous magnetic nanoparticles (CuFeO@mSiO-Cys-Luminol-Au NPs) is developed for the rapid and sensitive detection of NSE.

View Article and Find Full Text PDF