Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Chiral metal clusters have promise for circularly polarized luminescent materials; however, the absence of a unified understanding of the emission mechanism causes challenges in designing high-efficiency lighting materials based on these clusters. These challenges primarily arise from their vast structural variability and intricate emissive states. In this study, we show the crucial roles of the exciton binding energy and electron‒phonon interactions in achieving high-efficiency phosphorescence. Through Cu doping in the Au clusters and changing ligand substituents, we increase the exciton binding energies and reduce the electron‒phonon interactions; this results in a maximum 1.3-fold increase in the radiative recombination rate, a maximum 241.1-fold decrease in the nonradiative recombination rate, and ultimately a phosphorescence quantum yield of over 96% and circularly polarized luminescence in metal cluster crystals. A solution-processed circularly polarized light-emitting diode prototype exhibits an external quantum efficiency of 15.51% in green and a maximum dissymmetry factor |g| of 7.6 × 10. Our findings highlight the significance of designing metal clusters with optimized exciton binding energies and electron‒phonon interactions for enhanced optoelectronic performance, including in circularly polarized optoelectronics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11845751PMC
http://dx.doi.org/10.1038/s41467-025-57209-7DOI Listing

Publication Analysis

Top Keywords

circularly polarized
16
metal clusters
12
exciton binding
12
electron‒phonon interactions
12
chiral metal
8
binding energies
8
recombination rate
8
clusters
5
tightly bonded
4
bonded excitons
4

Similar Publications

Helically ordered chiral super spaces enable optical chirality in hybrid organic-inorganic perovskite crystals.

J Colloid Interface Sci

September 2025

Department of Advanced Materials Engineering for Information & Electronics, Kyung Hee University, Gyeonggi-do 17104, Republic of Korea. Electronic address:

We present a supramolecular templating strategy for inducing chirality in hybrid perovskites via confined crystallization within chiral super spaces-nanoconfined, helically ordered cavities formed by the self-assembly of achiral bent-core molecules with chiral additives. Upon removal of the additives, the resulting porous films retain permanent chirality. Quasi-2D hybrid organic-inorganic perovskites crystallized within these templates exhibit distinct chiroptical activity, including mirror-image circular dichroism and circularly polarized light emitting (CPLE), with CPLE dissymmetry factors reaching up to 1.

View Article and Find Full Text PDF

Towards Floquet Chern insulators of light.

Nat Nanotechnol

September 2025

Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA.

Topological photonics explores photonic systems that exhibit robustness against defects and disorder, enabled by protection from underlying topological phases. These phases are typically realized in linear optical systems and characterized by their intrinsic photonic band structures. Here we experimentally study Floquet Chern insulators in periodically driven nonlinear photonic crystals, where the topological phase is controlled by the polarization and the frequency of the driving field.

View Article and Find Full Text PDF

Chiral spin constrained assemblies for polarized optical mapping.

Sci Adv

September 2025

Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026 China.

Optical-enabled identification and interaction provide an integral link between the digital and physical realms. However, nowadays optic-encodings, predominantly reliant on light's intensity and wavelength, are hindered by environmental light interference and limited information capacity. The introduction of unusual polarization states, such as circular polarization-which is absent from ordinary surroundings-holds promise for higher-dimensional interaction.

View Article and Find Full Text PDF

Circularly polarized organic light-emitting diodes (CP-OLEDs) exhibiting circularly polarized electroluminescence (CP-EL) properties hold significant promise for future display technologies. However, enhancing the electroluminescence dissymmetry factor ( ) remains a substantial challenge. Herein, ultrastrong CP-EL emissions are achieved using a liquid crystal (LC)-functionalization strategy under the regulation of chiral co-assembly.

View Article and Find Full Text PDF

Color-Tunable Circularly Polarized Room-Temperature Phosphorescence by Intermolecular Phosphorescence Resonance Energy Transfer in a Chiral Co-assembled Liquid Crystal Polymer Network.

J Phys Chem Lett

September 2025

State Key Laboratory of Analytical Chemistry for Life Sciences, Engineering Research Center of Photoresist Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.

Circularly polarized room-temperature phosphorescent (CP-RTP) materials have been attracting great attention due to their potential applications in anticounterfeiting. In this study, we designed and synthesized a host-guest copolymer () with strong phosphorescence emission and a long emission lifetime using a self-doping strategy. The co-assembled liquid crystal polymer networks / doped with demonstrated a stronger RTP emission and longer lifetime (τ = 148 ms).

View Article and Find Full Text PDF