Chiral spin constrained assemblies for polarized optical mapping.

Sci Adv

Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026 China.

Published: September 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Optical-enabled identification and interaction provide an integral link between the digital and physical realms. However, nowadays optic-encodings, predominantly reliant on light's intensity and wavelength, are hindered by environmental light interference and limited information capacity. The introduction of unusual polarization states, such as circular polarization-which is absent from ordinary surroundings-holds promise for higher-dimensional interaction. Here, we propose a circularly polarized optical mapper capable of generating high-entropy, noise-resistant keys, serving as a physical interface for unique interaction process between parties. To materialize this mapper, we developed an automated, in situ synthesis platform that facilitates the self-acting fabrication of robust, solid-state, chiral optical spin constrained assemblies. Our mappers, formed by randomized arrays of discrete assemblies, demonstrate near-theoretical performance in uniformity (0.4917), uniqueness (0.4968), and reliability (0.9355). By emitting high-dimensional spin-polarized light, our mappers enable both far-field readout and near-field authentication, with resistance to stray light interference, offering promising applications in the internet of things, augmented reality, and beyond.

Download full-text PDF

Source
http://dx.doi.org/10.1126/sciadv.ady1001DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12412639PMC

Publication Analysis

Top Keywords

polarized optical
8
light interference
8
chiral spin
4
spin constrained
4
constrained assemblies
4
assemblies polarized
4
optical mapping
4
mapping optical-enabled
4
optical-enabled identification
4
identification interaction
4

Similar Publications

Nematic Liquid Crystals (LCs), noted for their simple molecular alignment and broad use in optoelectronics, remain unmodified for over a century. However, in 2017, a unique polar phase, the ferroelectric nematic (N), is confirmed. Subsequently, in 2024, the revolutionary spontaneous mirror symmetry breaking of ferroelectric twist-bend nematic chiral structures (N phase) is demonstrated.

View Article and Find Full Text PDF

Towards Floquet Chern insulators of light.

Nat Nanotechnol

September 2025

Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA.

Topological photonics explores photonic systems that exhibit robustness against defects and disorder, enabled by protection from underlying topological phases. These phases are typically realized in linear optical systems and characterized by their intrinsic photonic band structures. Here we experimentally study Floquet Chern insulators in periodically driven nonlinear photonic crystals, where the topological phase is controlled by the polarization and the frequency of the driving field.

View Article and Find Full Text PDF

Tracking phase transitions of tactoids in sulfated cellulose nanocrystals using second harmonic generation microscopy.

Carbohydr Polym

November 2025

Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Campus Kulak Kortrijk, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium. Electronic address:

Cellulose nanocrystals (CNCs) have emerged as promising candidates for chiroptical functional materials due to their ability to form cholesteric liquid crystals with tunable periodicity. The quality of the final cholesteric phase is influenced by the nucleation, growth and coalescence mechanism of the initial droplets, known as tactoids. Current research focuses on understanding the size and morphological transformations of these tactoids, to gain deeper insights into their dynamic behavior and, in turn, to better control the final properties of novel photonic materials.

View Article and Find Full Text PDF

Bent-core nematic liquid crystals exhibit unique properties, including giant flexoelectricity and polar electro-optic responses, making them ideal for energy conversion and electro-optic applications. When confined in nanopores, they can stabilize chiral nanostructures, enhance polar order, and enable defect-driven switching - offering potential in nanofluidics, sensing, and adaptive optics. The thermotropic ordering of the bent-core dimer CB7CB confined in anodic aluminum oxide (AAO) and silica membranes with precisely engineered cylindrical nanochannels - ranging from just a few nanometers to several hundred nanometers-is examined.

View Article and Find Full Text PDF

Chiral spin constrained assemblies for polarized optical mapping.

Sci Adv

September 2025

Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026 China.

Optical-enabled identification and interaction provide an integral link between the digital and physical realms. However, nowadays optic-encodings, predominantly reliant on light's intensity and wavelength, are hindered by environmental light interference and limited information capacity. The introduction of unusual polarization states, such as circular polarization-which is absent from ordinary surroundings-holds promise for higher-dimensional interaction.

View Article and Find Full Text PDF