98%
921
2 minutes
20
Eleutherococcus senticosus essential oil (ESEO) has the function of clearing heat and detoxifying, delaying aging. The ESEO yield obtained by traditional extraction methods is low because essential oils are encased in plant cell structures and are difficult to extract. In this work, we adopted the method of glucose oxidase promoting cellulase-assisted hydrodistillation, and utilized the interaction of glucose oxidase and cellulase to promote the full destruction of cellulose in plant cells, resulting in a large amount of internal essential oil flowing out and improving the yield of ESEO. By optimizing the main factors of enzymatic hydrolysis, the optimal extraction conditions for ESEO were determined through Box-Behnken design experiments. The ratio of glucose oxidase to cellulase is 1:20, the concentration of the enzyme is 1.02%, the temperature of enzymatic hydrolysis is 40.0°C, and the pH value of enzymatic hydrolysis is 3.44. The optimal yield was 0.140%. The yield of essential oil extracted from E. senticosus was increased by 49.9% compared to a single cellulase-assisted extraction method. The extraction process used in this work is milder, more environmentally friendly, and more efficient, which has important reference value for the industrial extraction and utilization of medicinal plants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cbdv.202402914 | DOI Listing |
Small Methods
September 2025
Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi, 710049, P. R. China.
Anisotropic gold nanoparticles (AuNPs) exhibit unique physicochemical properties that render them highly valuable for diverse applications. However, precise control over their growth direction and number of branches is challenging with conventional synthesis methods. A DNA origami-templated enzymatic synthesis strategy addresses this limitation.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine & The Second Affiliated Hospital, Hainan Medical University, Haikou, 571199, China.
Circulating tumor cells (CTCs) carry intact tumor molecular information, making them invaluable for personalized cancer monitoring. However, conventional capture methods, relying on passive diffusion, suffer from low efficiency due to insufficient collision frequency, severely limiting clinical utility. Herein, a magnetic micromotor-functionalized DNA-array hunter (MMDA hunter) is developed by integrating enzyme-propelled micromotors, magnetic nanoparticles, and nucleic acid aptamers into distinct functional partitions of a DNA tile self-assembly structure.
View Article and Find Full Text PDFBiosens Bioelectron
September 2025
College of Life Sciences, China Jiliang University, Hangzhou, 310018, China. Electronic address:
Glucose sensors are critical analytical devices designed for precise and continuous monitoring of glucose concentrations, playing a pivotal role in healthcare, particularly in diabetes management. Here, we synthesis glucose oxidase (GOx)/Se hydrogel to detect the glucose, thereby generating measurable electrical signals. Further, the transfection of electronic signals rely on the poly(dopamine) (PDA) grid in hydrogel.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
September 2025
Interdisciplinary Research Center in Biomedical Materials (IRCBM), COMSATS University Islamabad (CUI), Lahore Campus, 54000, Pakistan. Electronic address:
The incorporation of nanomaterials into smart flexible interfaces is a developing requirement for real-time diagnostics applications. In this work, we report a novel optical fabric-based sensor for the analysis of glucose and hydrogen peroxide (HO), addressing critical needs of healthcare, industrial safety, and environmental analysis. In contrast to traditional rigid substrates, we utilized cotton fabric as a porous and flexible sensing platform, immobilizing cerium oxide nanoparticles (CeO₂-NPs) using hydrogel.
View Article and Find Full Text PDFACS Omega
August 2025
VinUni-Illinois Smart Health Center, VinUniversity, Hanoi 100000, Vietnam.
Accurate and accessible glucose detection is essential for clinical diagnostics, point-of-care testing, food safety, and biosensing applications. In this study, we present a simple, scalable, and dual-mode glucose sensor that integrates commercial potassium permanganate (KMnO) with glucose oxidase to enable sensitive and selective detection in the clinically critical range of 1-5 mM. Leveraging the strong oxidative power and distinct optical characteristics of KMnO, the sensor operates via both absorbance measurement at 400 nm and visual colorimetric analysis, displaying a clear color change from purple to pink and yellow upon reaction with glucose.
View Article and Find Full Text PDF