A smart textile fabric-based optical nano-biosensor for hydrogen peroxide and glucose monitoring.

Spectrochim Acta A Mol Biomol Spectrosc

Interdisciplinary Research Center in Biomedical Materials (IRCBM), COMSATS University Islamabad (CUI), Lahore Campus, 54000, Pakistan. Electronic address:

Published: September 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The incorporation of nanomaterials into smart flexible interfaces is a developing requirement for real-time diagnostics applications. In this work, we report a novel optical fabric-based sensor for the analysis of glucose and hydrogen peroxide (HO), addressing critical needs of healthcare, industrial safety, and environmental analysis. In contrast to traditional rigid substrates, we utilized cotton fabric as a porous and flexible sensing platform, immobilizing cerium oxide nanoparticles (CeO₂-NPs) using hydrogel. This method provided homogeneous nanoparticle immobilization, facilitating better analyte interaction and allowing for clear colorimetric responses. The designed sensor's mechanism is driven by the redox transition between Ce and Ce, resulting in visible colorimetric shifts upon exposure to the analyte. Additionally, the immobilization of glucose oxidase (GO) augmented the sensor's high specificity towards glucose detection. The fabricated sensor demonstrated detection limits of 0.028 mM for HO and 0.42 mM for glucose. Real sample analysis was conducted using human serum spiked with glucose, proving its analytical effectiveness. The fabric-based platform, coupled with nanoparticle and enzyme immobilization, provides a flexible, cost-effective, and scalable sensing solution for point-of-care diagnostics. This research creates a new paradigm for flexible, real-time optical sensing, enabling future innovations in smart textiles and on-the-go diagnostics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2025.126894DOI Listing

Publication Analysis

Top Keywords

hydrogen peroxide
8
glucose
6
smart textile
4
textile fabric-based
4
fabric-based optical
4
optical nano-biosensor
4
nano-biosensor hydrogen
4
peroxide glucose
4
glucose monitoring
4
monitoring incorporation
4

Similar Publications

Environmental stressor-induced functional and expression dynamics of glutathione S-transferase genes in bees.

Pestic Biochem Physiol

November 2025

College of Life Sciences, Chongqing Normal University, Chongqing, China; Key Laboratory of Pollinator Resources Conservation and Utilization of the Upper Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China; Chongqing Key Laboratory of Vector Control and Utilization, Chongqing,

As key pollinators, bees are increasingly threatened by environmental stressors such as heavy metals, pesticides, and temperature fluctuations, which can cause oxidative stress and disrupt cellular homeostasis. Glutathione S-transferases (GSTs) play crucial roles in antioxidant defense and detoxification, yet systematic studies on bee GST families remain limited. Here, we conducted a genome-wide analysis of cytosolic GST genes in 13 bee species, identifying 146 genes in total.

View Article and Find Full Text PDF

Background: Manual wiping of surfaces, a primary method in preventing hospital acquired infections, can vary significantly in its ability to eliminate bacteria and prevent cross-contamination.

Methods: Four liquid-based cleaning and disinfecting formulations comprised of hydrogen peroxide (HP), ethoxylated alcohol (EA), quaternary ammonium compounds (Quat and Quat2), or a water-based control were evaluated for their bactericidal efficacy in combination with three different wiping materials: microfiber, polypropylene, and cotton. Each chemistry and wipe combination were evaluated for its ability to reduce microbial contamination on a hard, non-porous surface measuring one meter.

View Article and Find Full Text PDF

Iron nanoparticle synthesis using waste banana peels and Maxilon Blue 5G sono-degradation.

Int J Phytoremediation

September 2025

Department of Environmental Engineering, Faculty of Engineering and Architecture, Nevsehir Haci Bektas Veli University, Nevsehir, Turkey.

The green synthesis method is a significant approach that offers several advantages, including simplicity, rapidity, and cost-effectiveness in the synthesis of nanoparticles. Iron nanoparticles were synthesized in this work using waste banana peel extract as a capping and reducing agent. The produced nanoparticles were then subjected to a number of characterization procedures, such as Raman spectroscopy, X-ray diffractometry (XRD), zeta potential analysis, Fourier transform infrared (FT-IR) spectroscopy, ultraviolet-visible (UV-VIS) absorption spectroscopy, field scanning electron microscopy (FE-SEM), energy dispersive X-ray analysis (EDX), and thermogravimetric analysis (TGA).

View Article and Find Full Text PDF

Biochemical characterization of a flavodiiron protein from bird parasite Histomonas meleagridis: superoxide as a reaction intermediate.

J Biol Chem

September 2025

Laboratory of Redox Biology and Metabolism, Scintillon Institute, San Diego, CA; Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA. Electronic address:

Histomonas meleagridis is a parasitic protozoan which causes histomoniasis (blackhead disease) in a wide range of birds, including domesticated chickens and turkeys, representing a significant health problem in avian veterinary medicine. Despite being classified as an anaerobic parasite, H. meleagridis can survive transient exposure to oxygen while little is known about the mechanisms that allow this organism to cope with exposure to varying oxygen levels.

View Article and Find Full Text PDF

Catalysts for heterogeneous advanced oxidation processes (AOPs) in water remediation face environmental sustainability challenges, due to the intensive production of catalysts and limited stability of catalysts while maintaining high efficiency. Herein, we design a biomimetic carbon catalyst (BCC) inspired by the diatom frustule valve structure, achieving high environmental sustainability while maintaining superior water decontamination performance by a non-radical direct electron transfer (DET) pathway through activating peracetic acid (PAA). Utilizing a hydrogen-bonding strategy, BCC features pillared layered hierarchical pores with an ultrahigh specific surface area of 2710.

View Article and Find Full Text PDF