Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Glucose sensors are critical analytical devices designed for precise and continuous monitoring of glucose concentrations, playing a pivotal role in healthcare, particularly in diabetes management. Here, we synthesis glucose oxidase (GOx)/Se hydrogel to detect the glucose, thereby generating measurable electrical signals. Further, the transfection of electronic signals rely on the poly(dopamine) (PDA) grid in hydrogel. The PDA intercalates into Se through coordination recombination to form a clustered conductive grid. This structure was interleaved in Se gel network through dopamine. Through the N-π and π-π interactions, the PDA aggregates and penetrates through the hydrogel forming a rapid conducting network. From the calculation and characterizations, the appropriate amount of PDA interpenetrates the hydrogel grid and build a cascade catalysis channel for electronic signals transfer. As a result, the hydrogel glucose sensor displayed 54.4 μA mM·cm sensitivity and 1.38 μM limit of detection at a linear range of 0-15 mM. Compared to the hydrogel without PDA, the PDA hydrogel showed a significantly increasing of sensitivity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2025.117951DOI Listing

Publication Analysis

Top Keywords

hydrogel
8
hydrogel grid
8
electronic signals
8
hydrogel pda
8
glucose
6
pda
6
aggregation interpenetrating
4
interpenetrating induced
4
induced polydopamine
4
polydopamine conductive
4

Similar Publications

Vascularization of implanted biomaterials is critical to reconstructive surgery and tissue engineering. Ultimately, the goal is to promote a rapidly perfusable hierarchical microvasculature that persists with time and can meet underlying tissue needs. We have previously shown that using a microsurgical technique, termed micropuncture (MP), in combination with porous granular hydrogel scaffolds (GHS) fabricated via interlinking hydrogel microparticles (microgels) results in a rapidly perfusable patterned microvasculature.

View Article and Find Full Text PDF

The surfaces of 1D layered lepidocrocite-structured titanates (1DLs) are negatively charged due to an oxygen-to-titanium atomic ratio >2. This, and their layered structure, allow for facile ion exchange and high colloidal stability, demonstrated by ζ-potentials of ≈ -85 mV at their unadjusted pH of ≈10.4.

View Article and Find Full Text PDF

Injectable Plant Phosphate Coordination Compound-Based Adhesive Hydrogel Accelerates Osteoporotic Fracture Healing by Restoring Osteoclast/Osteoblast Imbalance.

ACS Nano

September 2025

Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Orthopaedic Surgery, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical Univer

Osteoporotic fractures are notoriously difficult to heal due to an imbalance between osteoblasts and osteoclasts. Current treatments often have limited efficacy or adverse side effects, necessitating safer and more effective solutions. Here, we developed an injectable plant-derived phosphate coordination compound-based adhesive hydrogel (MgPA-Gel) to restore bone homeostasis by integrating magnesium ions (Mg)-phytic acid (PA) nanoparticles with aminated gelatin (Gel-NH) and aldehydated starch (AS).

View Article and Find Full Text PDF

The unregulated use and improper disposal of active pharmaceutical ingredients (APIs), particularly phenylbutazone (PBZ), are contaminating water resources and posing serious risks to the food chain. PBZ is a nonsteroidal anti-inflammatory drug (NSAID) commonly used for treating pain and fever in animals, and its persistence in the environment due to inadequate waste management has become a cause of concern. To address this, we report the fabrication of benzimidazole-based self-assembled nanomicelles (R2 NMs) for selective detection and removal of PBZ.

View Article and Find Full Text PDF

Click chemistry-driven adhesive hydrogel for efficient healing of infected wounds through multistage comprehensive management.

J Mater Chem B

September 2025

State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.

Infected wound treatment remains a critical challenge in clinical medicine. Although existing treatments, like local debridement, antimicrobial agents, and growth factor therapies, have demonstrated certain therapeutic effects, they primarily target only specific stages of wound healing. Moreover, the escalating issue of antibiotic resistance limits their efficacy.

View Article and Find Full Text PDF