Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

: Tumor associated macrophages (TAMs) are critical components in regulating the immune statuses of the tumor microenvironments. Although TAM has been intensively studied, it is unclear how mitochondrial proteins such as AGK regulate the TAMs' function. : We investigated the AGK function in TAMs using macrophage-specific deficient mice with B16 and LLC syngeneic tumor models. Flow cytometry was used to evaluate the stemness and activation of CD8 T cells. The enhanced release of mtDNA into the cytosol in the -deficient BMDMs was measured by RT-PCR and immunofluorescence; the cGAS-STING-type I IFN pathway was evaluated by immunoblotting. Mitochondria functions were evaluated by electron microscope and seahorse equipment. : We have noted an increased expression of AGK in TAMs of multiple tumor types, which was negatively correlates with the tumor tissue immune scores. In the B16 and LLC tumor models, macrophage -deficient mice have reduced tumor growth and enhanced populations of CD8 Tpex. AGK-deficient macrophages have increased mitochondrial damage and mtDNA release into the cytosol, which leads to enhanced cGAS-STING-type I IFN activation. Blockade of the type I IFN signaling pathway with anti-IFNAR reversed the phenotype in -deficient mice. : Our findings define a critical role of AGK in maintaining the macrophage mitochondrial homeostasis that is associated with mtDNA release and following cGAS-STING activation and type I IFN pathway. Targeting AGK in TAMs may represent a novel strategy to enhance anti-tumoral activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11729555PMC
http://dx.doi.org/10.7150/thno.101298DOI Listing

Publication Analysis

Top Keywords

mtdna release
12
cgas-sting-type ifn
12
b16 llc
8
tumor models
8
ifn pathway
8
agk tams
8
-deficient mice
8
type ifn
8
tumor
7
ifn
5

Similar Publications

Mitochondrial DNA (mtDNA) functions as an endogenous danger-associated molecular pattern that broadly activates the cGAS-STING pathway to potentiate antitumor immunotherapy. However, inefficient mtDNA release severely limits its ability to robustly activate downstream immune responses. Recent studies reveal that ferroptosis can trigger mtDNA release from damaged mitochondria into the cytosol, thereby stimulating antitumor immunity.

View Article and Find Full Text PDF

SiO NP promotes allergic gastritis induced by degranulation of mouse MC9 cell through AQP4-mediated impairment of SIRT3-TFAM deacetylation and mitochondrial autophagy.

J Hazard Mater

September 2025

College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR C

Silicon dioxide nanoparticles (SiO NPs) are a novel material with a wide range of applications whose cumulative effects in the body pose certain health risks. The types of gastric injuries caused by different-sized SiO NPs and their mechanisms, however, remain unclear. Based on this, we established a mouse subchronic exposure model (10 mg/kg/d, 21 consecutive days of tube-feeding) with different SiO NP sizes (50, 300, and 1000 nm) in conjunction with in vitro MC9 and BMMCs models (160 μg/mL exposure for 24 h) to explore the gastric injury mechanisms.

View Article and Find Full Text PDF

Nanoparticles Induce Protein Corona Conformational Change to Reshape Intracellular Interactome for Microglial Polarization.

ACS Nano

September 2025

State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.

Nanoparticles bind to proteins in cells selectively and form a protein corona around them. However, the mechanisms of protein conformational changes underlying the interactions between nanoparticles and protein coronas remain poorly understood. In this study, we prepared small molecule self-assembled nanoparticles (Aloin NPs) as a research tool to investigate the allosteric mechanism of protein coronas.

View Article and Find Full Text PDF

MPTP controls the release of mtDNA and induces endothelial cell PANoptosis in trichloroethylene-induced immune kidney injury.

Eur J Pharmacol

September 2025

Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China; Institute of Dermatology, Anhui Medical University, Hefei 230032, Anhui, China. Electronic

Vascular endothelial cells (ECs) damage is closely related to kidney injury. Our previous research revealed the involvement of interferon regulatory factor 1 (IRF1)-mediated PANoptosis of renal ECs in trichloroethylene (TCE)-induced immune kidney injury. However, how IRF1 regulates ECs PANoptosis remains unclear.

View Article and Find Full Text PDF

Nuclear mitochondrial DNA transfer revisited: From genomic noise to hallmark of aging.

Ageing Res Rev

September 2025

Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy; Department of Medicine and Surgery, LUM University, Casamassima, Italy. Electronic address:

Nuclear insertions of mitochondrial DNA (mtDNA) segments (NUMTs) represent an evolutionarily conserved phenomenon originating from the ancient endosymbiotic relationship between mitochondria and host cells. These insertions predominantly localize near intergenic or regulatory regions and are often enriched in tissues with high metabolic activity. Once regarded as inert pseudogenes or genomic artifacts, NUMTs are now recognized as dynamic elements capable of modulating nuclear architecture and cellular function.

View Article and Find Full Text PDF