98%
921
2 minutes
20
CO sequestration technologies (CSTs) allow for increased CO emissions without exceeding a chosen temperature limit by creating additional carbon budgets. While these CO sequestration technologies offer low-cost routes to net-zero emissions, namely, the CST benefits, they impede progress to the Sustainable Development Goals, namely, the CST disbenefits. Focusing on China, we assess both the CST disbenefits and benefits in the climate-energy-air-health cascade by an integrated modeling framework. We show that, CST can save 4.98-15.65 trillion CNY in achieving net-zero emissions while compromising the sustainability on non-fossil energy penetration, air quality, and public health improvement, leading to a substantial loss up to 7.82 trillion CNY during 2020-2060. Given the high likelihood of a large-scale deployment of CSTs in the future, pursuing policy coherence that balances trade-offs between CST disbenefits and benefits is vital. To that end, CSTs should be allocated to power sectors as a priority and stringent end-of-pipe equipment should be retrofitted into non-power sectors before CST allocation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.4c09545 | DOI Listing |
Environ Sci Technol
September 2025
Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China.
Rapidly expanding nascent ecosystems at glacier forefields under climate warming dramatically enhance the terrestrial carbon (C) sink. Microbial C fixation and degradation, closely implicated in nitrogen (N) transformation and plant-soil-microbe interactions, significantly regulate soil C accumulation. However, how shifts in microbial functional potential impact soil C sequestration during vegetation succession remains unclear.
View Article and Find Full Text PDFJ Virol
September 2025
Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan.
Double-stranded RNA (dsRNA), which induces an innate immune response against viral infections, is rarely detected in influenza A virus (IAV)-infected cells. Nevertheless, we previously reported that the influenza A viral ribonucleoprotein (vRNP) complex generates looped dsRNAs during RNA synthesis . This finding suggests that IAV possesses a specific mechanism for sequestering dsRNA within infected cells, thereby enabling viral evasion of the innate immune response.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
Division Macromolecular Chemistry, Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, Dresden, 01069, Germany.
Stimuli-responsive (multiphase) coacervates deserve significant attention as cell-like entities that can adapt to their environment and undergo morphological reconfiguration. In this study, a tandem-triggered transition system is presented that enables the transformation of single-phase coacervates into multiphase structures through the sequential application of two external stimuli: pH and salt concentration. A polyanion containing acid-labile amide bond is incorporated into the membrane-less coacervates.
View Article and Find Full Text PDFJ Hazard Mater
September 2025
College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China. Electronic address:
Nanoplastics (NPs) in marine ecosystems have garnered increasing attention for their interference with the physiological processes of aquatic organisms. An in-depth examination of the toxicological responses of Nannochloropsis oceanica, a species vital to marine ecosystems, is essential due to the crucial role of lipid metabolism in carbon sequestration and energy allocation in microalgae. This study analyzed the toxicological responses of N.
View Article and Find Full Text PDFCarbohydr Polym
November 2025
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China. Electronic address:
Sulforaphene (SFE) is a bioactive isothiocyanate, known for its cancer-preventive, anti-inflammatory, and antioxidant properties. However, the application of SFE is severely limited by its poor stability. Hydroxypropyl methylcellulose (HPMC), an amphiphilic carbohydrate polymer, has potentials to enhance the stability of SFE and the loading capacity.
View Article and Find Full Text PDF