ALKBH5 Protects Against Hepatic Ischemia-Reperfusion Injury by Regulating YTHDF1-Mediated YAP Expression.

Int J Mol Sci

Department of Hepatobiliary and Pancreatic Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China.

Published: October 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Ischemia/reperfusion (I/R) injury with severe cell death is a major complication involved in liver transplantation and resection. The identification of key regulators improving hepatocyte activity may provide potential strategies to clinically resolve I/R-induced injury. N-methyladenosine (mA) RNA modification is essential for tissue homeostasis and pathogenesis. However, the potential involvement of mA in the regulation of hepatocyte activity and liver injury has not been fully explored. In the present study, we found that hepatocyte AlkB homolog H5 (ALKBH5) levels were decreased both in vivo and in vitro I/R models. Hepatocyte-specific ALKBH5 overexpression effectively attenuated I/R-induced liver necrosis and improved cell proliferation in mice. Mechanistically, ALKBH5-mediated mA demethylation improved the mRNA stability of YTH N-methyladenosine RNA-binding protein 1 (YTHDF1), thereby increasing its expression, which consequently promoted the translation of Yes-associated protein (YAP). In conclusion, ALKBH5 is a regulator of hepatic I/R injury that improves hepatocyte repair and proliferation by maintaining YTHDF1 stability and YAP content. The ALKBH5-mA-YTHDF1-YAP axis represents promising therapeutic targets for hepatic I/R injury to improve the prognosis of liver surgery.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11546256PMC
http://dx.doi.org/10.3390/ijms252111537DOI Listing

Publication Analysis

Top Keywords

i/r injury
12
hepatocyte activity
8
hepatic i/r
8
injury
6
alkbh5
4
alkbh5 protects
4
protects hepatic
4
hepatic ischemia-reperfusion
4
ischemia-reperfusion injury
4
injury regulating
4

Similar Publications

Ethnopharmacological Relevance: Acute kidney injury (AKI) is a growing worldwide health concern. Danggui Shaoyao San (DGSYS) was an frequently-used representative prescription to "promote blood and water and harmonize the body" in traditional Chinese medicine, and its underlying mechanism against AKI remains to be elucidated.

Aim Of The Study: To investigate the protective effect and potential molecular mechanism of DGSYS in alleviating AKI by network pharmacology and experiment validation.

View Article and Find Full Text PDF

Alpinetin protects against myocardial ischemia-reperfusion injury by inhibiting ferroptosis and apoptosis via mitochondrial ferritin.

Eur J Pharmacol

September 2025

Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, China. Electronic address:

Purpose: Ischemia-reperfusion injury remains a major problem following myocardial infarction. Alpinetin (ALPT) has been reported to exhibit cardioprotective effects as well as resistance to ischemia-reperfusion injury. However, its role and mechanism during myocardial ischemia-reperfusion injury are unknown.

View Article and Find Full Text PDF

Decreasing H3K27me3 Alleviates Cerebral Ischemia/reperfusion Injury by Modulating FOXP1 Expression.

Free Radic Biol Med

September 2025

Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, China; National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou China. Electronic address:

Elevated H3K27me3 levels during cerebral I/R injury exacerbate neuronal damage through oxidative stress, but the underlying mechanism remains to be elucidated. We hypothesized that reduced H3K27me3 confers protection by modulating FOXP1 expression. Employing multifaceted approaches, we demonstrate that H3K27me3 reduction in vivo and in vitro enhances lipid metabolism and rescues oxygen-glucose deprivation (OGD)-induced mitochondrial morphological abnormalities and functional deficits.

View Article and Find Full Text PDF

Background: Myocardial ischemia/reperfusion (I/R) injury is a common cause of death. FXYD domain-containing ion transport regulator-5 (Fxyd5) is a type I membrane protein that plays a significant role in mediating cellular functions. However, the expression and function of Fxyd5 in myocardial I/R injury remain unclear.

View Article and Find Full Text PDF