Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

During the operation of load cell, heat is generated by the strain gauge and the electronics on the PCB board, which leads to temperature gradients within the sensor itself. These temperature gradients are unstable at different ambient temperatures. Compensation inaccuracies can also occur when compensating for sensor measurements at different temperatures This paper proposes a method to change the position of temperature compensation resistors to address errors caused by the temperature field effect of the strain gauge sensor itself. Without affecting the sensor's strain measurement, the correctness of the proposed method is demonstrated through steady-state thermal simulation results in ANSYS and experimental results, effectively addressing errors caused by unstable temperature gradients during the operation of strain gauge sensors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11527985PMC
http://dx.doi.org/10.1038/s41598-024-76688-0DOI Listing

Publication Analysis

Top Keywords

strain gauge
12
temperature gradients
12
temperature field
8
load cell
8
errors caused
8
temperature
6
field analysis
4
analysis compensation
4
compensation improvement
4
improvement load
4

Similar Publications

Conductive hydrogels have revolutionized wearable electronics due to their biocompatibility and tunable properties. However, it remains a great challenge for hydrogel-based sensors to maintain both conductivity and mechanical integrity in harsh environments. Synergistic dynamic interactions provide a promising strategy to address this issue.

View Article and Find Full Text PDF

The aim of this study was to compare the compressive forces generated by Dynamic Compression Angle-Stable Interlocking Nail (DCASIN) with those of traditional Dynamic Compression Plates (DCP) and Locking Compression Plates (LCP) using synthetic diaphyseal bone models (SDBM). Three groups were established based on the fixation method (G-DCASIN, G-DCP, and G-LCP), with implants fixed to SDBM simulating a transverse fracture, comprising 10 repetitions per group. A strain-gauge load cell was positioned in the SDBM gap to measure compressive forces in kilograms, recorded 30 s after the completion of each group-specific compression technique.

View Article and Find Full Text PDF

Nanocellulose-assisted construction of conductive gradient hydrogel for remote actuated and self-sensing soft actuator.

Carbohydr Polym

November 2025

Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Joint International Research Lab of Lignocellulosic Functional Materials, College of Materials Science and Engineering, Nanjing Forestry University, N

Hydrogel actuators show tremendous promise for applications in soft robots and artificial muscles. Nevertheless, developing a stretchable hydrogel actuator combining remote actuation and real-time signal feedback remains a challenge. Herein, a light-responsive hydrogel actuator with self-sensing function is fabricated by employing a localized immersion strategy to incorporate polyacrylamide (PAM) hydrogel network into semi-interpenetrating carbon nanotube/2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized cellulose nanofiber/poly(N-isopropylacrylamide) (CNT/TOCN/PNIPAM) hydrogel.

View Article and Find Full Text PDF

Single Te Nanoribbon for Disrupting Conventional Sensitivity-Power Limits of Flexible Strain Sensors.

Small

September 2025

State Key Laboratory of Flexible Electronics (LoFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China.

Flexible strain sensors are pivotal for the advancement of robotics, wearable healthcare, and human-machine interaction in the post-Moore era. However, conventional materials struggle to simultaneously achieve high sensitivity, a broad strain range, and low power consumption for cutting-edge applications. In this work, the issue is addressed through single crystal 1D tellurium nanoribbons (NRs), which are synthesized on SiO/Si substrate by hydrogen-assisted chemical vapor deposition (CVD) method.

View Article and Find Full Text PDF

Intrinsically Temperature-Insensitive and Highly Sensitive Flexible Wireless Strain Sensor.

ACS Sens

September 2025

Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China.

Accurate strain monitoring in environments with coexisting mechanical deformation and temperature fluctuations─such as solid rocket propellants, battery enclosures, and human ligaments─remains a longstanding challenge for flexible electronics. Conventional strain sensors suffer from significant thermal drift due to the intrinsic temperature dependence of their sensing materials, limiting their reliability in wireless and implantable applications. Here, we report an intrinsically temperature-insensitive, highly sensitive, wireless flexible strain sensor based on near-field communication technology.

View Article and Find Full Text PDF